zoukankan      html  css  js  c++  java
  • LCS原理复习◆wm◆

    X和Y,当另一序列Z既是X的子序列又是Y的子序列时,若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
    同理,若序列Z既是X的子序列同时也是Y的子序列,则称Z为X和Y的公共子序列。其中最长的子序列称为最长公共子序列。
    在求最长公共子序列中,我们可以看出如下规律:
    设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则
    1. 若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。 
    2. 若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。(即:Z是X序列中前m个元素所组成的序列与Y序列的最长公共子序列) 
    3. 若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。(即:Z是Y序列中前n个元素所组成的序列与X序列的最长公共子序列) 

    由上面三个条件可得如下公式:
    C[][]用来记录最长公共子序列的长度,则:
    c[i][j] = <1> 0; (当i、j = 0时);
    <2> c[i-1][j-1] + 1; (当i、j > 0 且 Xi = Yj时)(即第i个X序列元素与第j个Y元素相等)
    <3> max(c[i][j-1] , c[i-1][j]) (当i、j > 0 且 Xi != Yj时)(当Xi与Yj不等时,取两个式子的最大值,若两者相等则默认取第一个)
  • 相关阅读:
    bch算法生成nand flash中512byte校验和
    CFileDialog用法总结
    c++修改打印机名称
    c++连接打印机(转载)
    转发:for /f命令之—Delims和Tokens用法&总结
    c++中DLL文件的编写与实现——三步走
    GhostScript说明
    打印机API
    c++中DLL文件的编写与实现——三步走(2)
    windows程序设计基础知识
  • 原文地址:https://www.cnblogs.com/weisteve/p/2208311.html
Copyright © 2011-2022 走看看