zoukankan      html  css  js  c++  java
  • k8s-容器资源需求、资源限制及HeapSter-二十二

    一、容器资源需求、资源限制

    资源需求、资源限制:指的是cpu、内存等资源;

    资源需求、资源限制的两个关键字:

    • request:需求,最低保障,在调度时,这个节点必须要满足request需求的资源大小;
    • limits:限制、硬限制。这个限制容器无论怎么运行都不会超过limits的值;

    CPU:k8s的一个cpu对应一颗宿主机逻辑cpu。一个逻辑cpu还可以划分为1000个毫核(millcores)。所以1cpu=1000m;500m=0.5个CPU,0.5m相当于二分之一的核心;

    内存的计量单位:E、P、T、G、M、K

    [root@master ~]# kubectl explain pods.spec.containers.resources
    [root@master ~]# kubectl explain pods.spec.containers.resources.requests
    [root@master ~]# kubectl explain pods.spec.containers.resources.limits

    用法参考:https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

    [root@master metrics]# pwd
    /root/manifests/metrics
    [root@master metrics]# vim pod-demo.yaml
    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-demo
      labels:
        app: myapp
        tier: frontend
    spec:
      containers:
      - name: myapp
        image: ikubernetes/stress-ng
        command: ["/usr/bin/stress-ng", "-c 1", "--metrics-brief"]       #-c 1表示启动一个子进程对cpu做压测.默认stress-ng的一个子进程使用256M内存
        resources:
          requests:
            cpu: "200m"
            memory: "128Mi"
          limits:
            cpu: "500m"
            memory: "512Mi"
    
    #创建pod
    [root@master metrics]# kubectl apply -f pod-demo.yaml 
    pod/pod-demo created
    
    [root@master metrics]# kubectl get pods
    NAME       READY   STATUS    RESTARTS   AGE
    pod-demo   1/1     Running   0          6s
    
    [root@master metrics]# kubectl exec pod-demo -- top
    Mem: 1378192K used, 487116K free, 12540K shrd, 2108K buff, 818184K cached
    CPU:  26% usr   1% sys   0% nic  71% idle   0% io   0% irq   0% sirq
    Load average: 0.78 0.96 0.50 2/479 11
      PID  PPID USER     STAT   VSZ %VSZ CPU %CPU COMMAND
        6     1 root     R     6884   0%   1  26% {stress-ng-cpu} /usr/bin/stress-ng
        7     0 root     R     1504   0%   0   0% top
        1     0 root     S     6244   0%   1   0% /usr/bin/stress-ng -c 1 --metrics-

    我们对容器分配了资源限制后,k8s会自动分配一个QoS,叫服务质量,通过kubectl describe pods pod_name可以查看这个字段;

    [root@master metrics]# kubectl describe pods pod-demo |grep QoS
    QoS Class:       Burstable

    QoS可以分为三类(根据资源设置,自动归类)

    • Guranteed:表示每个容器的cpu和内存资源设置了相同的requests和limits值,即cpu.requests=cpu.limits和memory.requests=memory.limits,Guranteed会确保这类pod有最高的优先级,会被优先运行的,即使节点上的资源不够用;
    • Burstable:表示pod中至少有一个容器设置了cpu或内存资源的requests属性,可能没有定义limits属性,那么这类pod具有中等优先级;
    • BestEffort:指没有任何一个容器设置了requests或者limits属性,那么这类pod是最低优先级。当这类pod的资源不够用时,BestEffort中的容器会被优先终止,以便腾出资源来,给另外两类pod中的容器正常运行;

    二、HeapSter

    1、介绍

    HeapSter的作用是收集个节点pod的资源使用情况,然后以图形界面展示给用户。

    image

    kubelet中的cAdvisor负责收集每个节点上的资源使用情况,然后把信息存储HeapSter中,HeapSter再把数据持久化的存储在数据库InfluxDB中。然后我们再通过非常优秀的Grafana来图形化展示;

    一般我们监控的指标包括k8s集群的系统指标、容器指标和应用指标。

    默认InfluxDB使用的是存储卷是emptyDir,容器一关数据就没了,所以我们生产要换成glusterfs等存储卷才行。

     

    2、部署influxdb

    InfluxDB github:https://github.com/kubernetes-retired/heapster

    在node节点上先拉取镜像:

    #node01
    [root@node01 ~]# docker pull fishchen/heapster-influxdb-amd64:v1.5.2
    
    #node02
    [root@node02 ~]# docker pull fishchen/heapster-influxdb-amd64:v1.5.2

    在master节点上,拉取yaml文件,并修改、执行:

    [root@master metrics]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/influxdb.yaml
    
    [root@master metrics]# vim influxdb.yaml
    apiVersion: apps/v1        #此处不修改也可以,如果改成apps/v1,要加下面 selector那几行
    kind: Deployment
    metadata:
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      replicas: 1
      selector:            #加此行
        matchLabels:        #加此行
          task: monitoring        #加此行
          k8s-app: influxdb    #加此行
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: influxdb
        spec:
          containers:
          - name: influxdb
            image: fishchen/heapster-influxdb-amd64:v1.5.2    #修改此处镜像地址    
            volumeMounts:
            - mountPath: /data
              name: influxdb-storage
          volumes:
          - name: influxdb-storage
            emptyDir: {}
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-influxdb
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      ports:
      - port: 8086
        targetPort: 8086
      selector:
        k8s-app: influxdb
    
    #创建资源
    [root@master metrics]# kubectl apply -f influxdb.yaml 
    deployment.apps/monitoring-influxdb created
    service/monitoring-influxdb created
    
    #查看
    [root@master metrics]# kubectl get pods -n kube-system |grep influxdb
    monitoring-influxdb-5899b7fff9-2r58w    1/1     Running   0          6m59s
    
    [root@master metrics]# kubectl get svc -n kube-system |grep influxdb
    monitoring-influxdb    ClusterIP   10.101.242.217   <none>        8086/TCP        7m6s

    3、部署rbac

    下面我们开始部署heapster,但heapster依赖rbac,所以我们先部署rbac:

    [root@master metrics]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/rbac/heapster-rbac.yaml
    
    [root@master metrics]# kubectl apply -f heapster-rbac.yaml 
    clusterrolebinding.rbac.authorization.k8s.io/heapster created

    4、部署heapster

    #node01拉取镜像
    [root@node01 ~]# docker pull rancher/heapster-amd64:v1.5.4
    
    #node02拉取镜像
    [root@node02 ~]# docker pull rancher/heapster-amd64:v1.5.4
    
    #master拉取yaml文件
    [root@master metrics]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/heapster.yaml
    
    [root@master metrics]# vim heapster.yaml
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: heapster
      namespace: kube-system
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: heapster
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: heapster
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: heapster
        spec:
          serviceAccountName: heapster
          containers:
          - name: heapster
            image: rancher/heapster-amd64:v1.5.4    #修改此处镜像地址
            imagePullPolicy: IfNotPresent
            command:
            - /heapster
            - --source=kubernetes:https://kubernetes.default
            - --sink=influxdb:http://monitoring-influxdb.kube-system.svc:8086
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: Heapster
      name: heapster
      namespace: kube-system
    spec:
      ports:
      - port: 80
        targetPort: 8082
      type: NodePort        #我添加了此行,
      selector:
        k8s-app: heapster
    
    #创建
    [root@master metrics]# kubectl apply -f heapster.yaml 
    serviceaccount/heapster created
    deployment.apps/heapster created
    
    #查看
    [root@master metrics]# kubectl get pods -n kube-system |grep heapster-
    heapster-7c8f7dc8cb-kph29               1/1     Running   0          3m55s
    [root@master metrics]# 
    [root@master metrics]# kubectl get svc -n kube-system |grep heapster
    heapster               NodePort    10.111.93.84     <none>        80:31410/TCP    4m16s    #由于用了NodePort,所以pod端口映射到了节点31410端口上
    
    #查看pod日志
    [root@master metrics]# kubectl  logs heapster-7c8f7dc8cb-kph29 -n kube-system

    5、部署Grafana

    #node01拉取镜像
    [root@node01 ~]# docker pull angelnu/heapster-grafana:v5.0.4
    
    #node02拉取镜像
    [root@node02 ~]# docker pull angelnu/heapster-grafana:v5.0.4
    
    #master拉取yaml文件
    [root@master metrics]# wget https://raw.githubusercontent.com/kubernetes-retired/heapster/master/deploy/kube-config/influxdb/grafana.yaml
    
    #编辑yaml文件
    [root@master metrics]# vim grafana.yaml
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-grafana
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          task: monitoring
          k8s-app: grafana
    
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: grafana
        spec:
          containers:
          - name: grafana
            image: angelnu/heapster-grafana:v5.0.4    #修改镜像地址
            ports:
            - containerPort: 3000
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/ssl/certs
              name: ca-certificates
              readOnly: true
            - mountPath: /var
              name: grafana-storage
            env:
            - name: INFLUXDB_HOST
              value: monitoring-influxdb
            - name: GF_SERVER_HTTP_PORT
              value: "3000"
              # The following env variables are required to make Grafana accessible via
              # the kubernetes api-server proxy. On production clusters, we recommend
              # removing these env variables, setup auth for grafana, and expose the grafana
              # service using a LoadBalancer or a public IP.
            - name: GF_AUTH_BASIC_ENABLED
              value: "false"
            - name: GF_AUTH_ANONYMOUS_ENABLED
              value: "true"
            - name: GF_AUTH_ANONYMOUS_ORG_ROLE
              value: Admin
            - name: GF_SERVER_ROOT_URL
              # If you're only using the API Server proxy, set this value instead:
              # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy
              value: /
          volumes:
          - name: ca-certificates
            hostPath:
              path: /etc/ssl/certs
          - name: grafana-storage
            emptyDir: {}
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        # For use as a Cluster add-on (https://github.com/kubernetes/kubernetes/tree/master/cluster/addons)
        # If you are NOT using this as an addon, you should comment out this line.
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-grafana
      name: monitoring-grafana
      namespace: kube-system
    spec:
      # In a production setup, we recommend accessing Grafana through an external Loadbalancer
      # or through a public IP.
      # type: LoadBalancer
      # You could also use NodePort to expose the service at a randomly-generated port
      # type: NodePort
      ports:
      - port: 80
        targetPort: 3000
      type: NodePort        #为了能在集群外部访问Grafana,所以我们需要定义NodePort
      selector:
        k8s-app: grafana
    
    
    #创建
    [root@master metrics]# kubectl apply -f grafana.yaml 
    deployment.apps/monitoring-grafana created
    service/monitoring-grafana created
    
    #查看
    [root@master metrics]# kubectl get pods -n kube-system |grep grafana
    monitoring-grafana-84786758cc-7txwr     1/1     Running   0          3m47s
    
    [root@master metrics]# kubectl get svc -n kube-system |grep grafana
    monitoring-grafana     NodePort    10.102.42.86     <none>        80:31404/TCP    3m55s    #可见pod的端口映射到了node上的31404端口上

    pod的端口已经映射到了node上的31404端口上;

    此时,在集群外部,用浏览器访问:http://ip:31404

    如下图

    image

    但是如何使用,可能还需要进一步学习influxbd、grafana等;

    最后,HeapSter可能快被废除了…

    新型的监控系统比如有:Prometheus(普罗米修斯)

  • 相关阅读:
    json页面解析
    map判断
    将页面中所有的checkbox设成单选得
    配置两个环境变量:
    一个input框边输入,另外一个input框中边显示的触发事件
    页面tr和td的的隐藏与显示
    判断声明出来的list为空的时候,list!=null
    从一个表中往另外一个表中插入数据用到的SQL
    final使用方法
    Android学习笔记(23):列表项的容器—AdapterView的子类们
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/10594525.html
Copyright © 2011-2022 走看看