zoukankan      html  css  js  c++  java
  • 7、transformation和action2

    一、transformation开发实战

    1、map: 将集合中每个元素乘以2

    使用map算子,将集合中的每个元素都乘以2
    map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象
    创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
    同时call()方法的返回类型,也必须与第二个泛型类型同步
    在call()方法内部,就可以对原始RDD中的
    每一个元素进行各种处理和计算,并返回一个新的元素
    所有新的元素,就会组成一个新的RDD
    
    
    
    ----------java 实现----------
    
    package cn.spark.study.core;
    
    import java.util.Arrays;
    import java.util.List;
    
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.Function;
    import org.apache.spark.api.java.function.VoidFunction;
    
    /**
     * transformation实战
     * 
     * @author bcqf
     *
     */
    
    public class TransformationOperation {
        public static void main(String[] args) {
            map();
            
        }
    
        /**
         * map算子案例:将集合中每一个元素都乘以2
         */
        private static void map() {
            // 创建SparkConf
            SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
    
            // 创建JavaSparkcontext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            // 构造集合
            List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
            
            // 并行化集合,创建初始RDD
            JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
            
            // 使用map算子,将集合中的每个元素都乘以2
            // map算子,是对任何类型的RDD,都可以调用的,在Java中,map算子接收的参数是Function对象
            // 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
            // 同时call()方法的返回类型,也必须与第二个泛型类型同步
            // 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
            // 所有新的元素,就会组成一个新的RDD

             //public interface Function<T1, R> extends Serializable {
             //public R call(T1 v1) throws Exception;
             //}

            JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
    
                private static final long serialVersionUID = 1L;
    
                //传入ca11()方法的,就是1,2,3,4,5
                //返回的就是2,4,6,8,10
                @Override
                public Integer call(Integer v1) throws Exception {
                    // TODO Auto-generated method stub
                    return v1 * 2;
                }
            });    
            
            //打印新的RDD

    //VoidFunction:A function with no return value

             //public interface VoidFunction<T> extends Serializable {
             //public void call(T t) throws Exception;
             //}

            multipleNumberRDD.foreach(new VoidFunction<Integer>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Integer t) throws Exception {
                    System.out.println(t);
                }            
            });
            
            //关闭JavaSparkContext
            sc.close();
            
        }
    
        
            
    }
    
    
    
    
    
    
    
    ----------scala 实现----------
    
    package cn.spark.study.core
    
    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    
    object TransformationOperation {
      def main(args: Array[String]) {
        map()
      }
    
      def map() {
        val conf = new SparkConf().setAppName("map").setMaster("local")
    
        val sc = new SparkContext(conf)
    
        val numbers = Array(1, 2, 3, 4, 5)
        
        val numberRDD = sc.parallelize(numbers, 1)
        
        val multipleNumberRDD = numberRDD.map { num => num * 2}
        
        multipleNumberRDD.foreach {num => println(num)}
    
      }
    
    }

    2、filter:过滤出集合中的偶数

    -------------java实现------------
    
        /**
         * filter算子案例:过滤出集合中的偶数
         */
        private static void filter() {
            // 创建SparkConf
            SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
    
            // 创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
    
            // 模拟集合
            List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            
            // 并行化集合,创建初始RDD
            JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
            
            // 对初始RDD执行filter算子,过滤出其中的偶数
            // filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
            // 但是唯一的不同,就是call()方法的返回类型是Boolean
            // 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
            // 来判断这个元素是否是你想要的
            // 如果你想在新的RDD中保留这个元素,那么就返回true,否则,不想保留这个元素,返回false
            JavaRDD<Integer> evenNumberRDD =  numberRDD.filter(new Function<Integer, Boolean>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public Boolean call(Integer v1) throws Exception {
                    return v1 % 2 == 0;
                }
            });
            
            // 打印新的RDD
            evenNumberRDD.foreach(new VoidFunction<Integer>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Integer t) throws Exception {
                    System.out.println(t);            
                }
            });        
            
            // 关闭JavaSparkContext
            sc.close();
    
        }
    
    
    //结果

    2
    4
    6
    8
    10


    -------------scala实现------------ def filter() { val conf = new SparkConf().setAppName("filter").setMaster("local") val sc = new SparkContext(conf) val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) val numberRDD = sc.parallelize(numbers, 1) val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 } evenNumberRDD.foreach { num => println(num)} }

    3、flatMap:将行拆分为单词

    ----------java实现-----------
    
        private static void flatMap() {
            // 创建SparkConf
            SparkConf conf = new SparkConf().setAppName("flatMap").setMaster("local");
            
            // 创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //构造集合
            List<String> lineList = Arrays.asList("hello you", "hello me", "hello word");
            
            // 并行化集合,创建RDD
            JavaRDD<String> lines = sc.parallelize(lineList);
            
            // 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
            // flatMap算子,在Java中,接收的参数是FlatMapFunction
            // 我们需要自己定义FlatMapFunction的第一个泛型类型,即,代表了返回的新元素的类型
            // call()方法,返回的类型,不是U,而是Iterable<U>,这里的U也与第二个泛型类型相同
            // flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
            // 多个元素,即封装在Iterable集合中,可以使用ArrayList等集合
            // 新的RDD中,即封装了所有的新元素,也就是说,新的RDD大小一定是大于等于原始RDD的大小

            // 从每个输入记录返回零个或多个输出记录的函数
            //public interface FlatMapFunction<T, R> extends Serializable {
            //public Iterable<R> call(T t) throws Exception;
            //}

            JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public Iterable<String> call(String t) throws Exception {
                    return Arrays.asList(t.split(" "));
                }
            });
            
            // 打印新的RDD
            words.foreach(new VoidFunction<String>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(String t) throws Exception {
                    System.out.println(t);
                }
            });
            
            // 关闭JavaSparkContext
            sc.close();
            
        }
    
    
    //结果

    hello
    you
    hello
    me
    hello
    word

    -----------scala实现------------
    
      def flatMap() {
        val conf = new SparkConf().setAppName("flatMap").setMaster("local")
        
        val sc = new SparkContext(conf)
        
        val lineArray = Array("hello you", "hello me", "hello word")
        
        val lines = sc.parallelize(lineArray, 1)
        
        val words = lines.flatMap {line => line.split(" ")}
        
        words.foreach { word => println(word)}
      }

    4、groupByKey:将每个班级的成绩进行分组

    ---------java实现---------
        private static void groupByKey() {
            //创建SparkConf
            SparkConf conf = new SparkConf().setAppName("groupByKey").setMaster("local");
            
            //创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //模拟集合
            List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                    new Tuple2<String, Integer>("class1", 80),
                    new Tuple2<String, Integer>("class2", 75),
                    new Tuple2<String, Integer>("class1", 90),
                    new Tuple2<String, Integer>("class2", 65));
            
            //并行化集合
            JavaPairRDD<String, Integer> score = sc.parallelizePairs(scoreList);
            
            //针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
            JavaPairRDD<String, Iterable<Integer>> groupedScores =  score.groupByKey();
            
            groupedScores.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Tuple2<String, Iterable<Integer>> t) throws Exception {
                    System.out.println("class: " + t._1);
                    Iterator<Integer> ite = t._2.iterator();
                    
                    while(ite.hasNext()) {
                        System.out.println(ite.next());
                    }
                    System.out.println("======================");
                }
            });
            
            //关闭JavaSparkContext
            sc.close();
                    
        }
    
    
    //结果

    class: class1
    80
    90
    ======================
    class: class2
    75
    65
    ======================

    ---------scala实现---------
      def groupByKey() {
        val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
            Tuple2("class1", 90), Tuple2("class2", 60))
        val scores = sc.parallelize(scoreList, 1)
        val groupedScores = scores.groupByKey()
        
        groupedScores.foreach(score => { 
          println(score._1); 
          score._2.foreach { singleScore => println(singleScore)};
          println("==================")
          })      
          
      }

    5、reduceByKey:统计每个班级的总分

    --------java实现---------
        private static void reduceByKey() {
            //创建SparkConf
            SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local");
            
            //创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //模拟集合
            List<Tuple2<String, Integer>> scoreList = Arrays.asList(
                    new Tuple2<String, Integer>("class1", 80),
                    new Tuple2<String, Integer>("class2", 75),
                    new Tuple2<String, Integer>("class1", 90),
                    new Tuple2<String, Integer>("class2", 65));
            
            //并行化集合
            JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
            
            // 针对scoreRDD,执行reduceByKey算子
            // reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值
            // 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
            // 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将返回的值再与第三个value传入
            // 因此此处,会自动定义两个类型参数类型,代表call()方法的两个传入参数的类型
            // 第三个类型参数,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
            // reduceByKey算子返回的RDD,还是JavaPairRDD<Key,Value>

             //一个双参数函数,接收类型为T1和T2的参数,并返回一个R 
             //public interface Function2<T1, T2, R> extends Serializable {
             //public R call(T1 v1, T2 v2) throws Exception;
             //}

            JavaPairRDD<String, Integer> totalScores  = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
    
                private static final long serialVersionUID = 1L;
    
                //对每个key,都会将其value,依次传入ca11方法
                //从而聚合出每个key对应的一个value
                //然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
                @Override
                public Integer call(Integer v1, Integer v2) throws Exception {
                    return v1 + v2;
                }
            });
            
            // 打印totalScores RDD
            totalScores.foreach(new VoidFunction<Tuple2<String,Integer>>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Tuple2<String, Integer> t) throws Exception {    
                    System.out.println(t._1 + ": " + t._2);
                }
            });
                        
            
            //关闭JavaSparkContext
            sc.close();
        }
    
    
    //结果

    class1: 170
    class2: 140

    --------scala实现---------
    
      def reduceByKey() {
        val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
            Tuple2("class1", 90), Tuple2("class2", 60))
        val scores = sc.parallelize(scoreList, 1)
        val totalScores = scores.reduceByKey(_ + _)
        
        totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2))
        
      }

    6、sortByKey:将学生分数进行排序

    --------java实现---------
        private static void sortByKey() {
            //创建SparkConf
            SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local");
            
            //创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //模拟集合
            List<Tuple2<Integer, String>> scoreList = Arrays.asList(
                    new Tuple2<Integer, String>(65, "leo"),
                    new Tuple2<Integer, String>(50, "tom"),
                    new Tuple2<Integer, String>(100, "marry"),
                    new Tuple2<Integer, String>(80, "jack"));        
            
            //并行化集合, 创建RDD
            JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
            
            //针对scoreRDD,执行sortByKey算子; false: 降序
            // sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序
            // 返回的,还是JavaPairRDD,其中元素内容,都是和原始RDD一模一样的
            // 就是顺序不一样了
            JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
            
            //打印sortedScored RDD
            sortedScores.foreach(new VoidFunction<Tuple2<Integer,String>>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Tuple2<Integer, String> t) throws Exception {
                    System.out.println(t._1 + ": " + t._2);
                }
            });
            
            
            //关闭JavaSparkContext
            sc.close();
            
        }
    
    
    //结果

    100: marry
    80: jack
    65: leo
    50: tom

    --------scala实现---------
      def sortByKey() {
        val conf = new SparkConf().setAppName("groupByKey").setMaster("local")
        val sc = new SparkContext(conf)
        val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"), Tuple2(100, "marry"), Tuple2(85, "jack"))
        val scores = sc.parallelize(scoreList, 1)
        val sortedScores = scores.sortByKey(false)
        sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore))
      }

    7、join和cogroup:打印每个学生的成绩

    join:

    --------java实现--------
        private static void join() {
            //创建SparkConf
            SparkConf conf = new SparkConf().setAppName("join").setMaster("local");
            
            //创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //模拟集合
            List<Tuple2<Integer, String>> studentList = Arrays.asList(
                    new Tuple2<Integer, String>(1, "leo"),
                    new Tuple2<Integer, String>(2, "jack"),
                    new Tuple2<Integer, String>(3, "tom"));
            
            List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                    new Tuple2<Integer, Integer>(1, 100),
                    new Tuple2<Integer, Integer>(2, 90),
                    new Tuple2<Integer, Integer>(3, 60));
            
            //并行化两个RDD
            JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
            JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
            
            //使用join关联两个RDD
            // 使用join算子关联两个RDD
            // join以后,还是会根据key进行join,并返回JavaPairRDD
            // 但是JavaPairRDD的第一个泛型类型是之前两个JavaPairRDD的key的类型,因为是通过key进行join的
            // 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为原始RDD的value的类型
            // join,就返回的RDD的每一个元素,就是通过key join上的一个pair
            // 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
            // 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
            // join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
            JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
            
            //打印studentScores RDD
            studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<String,Integer>>>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Tuple2<Integer, Tuple2<String, Integer>> t) throws Exception {
                    System.out.println("student id: " + t._1);
                    System.out.println("student name: " + t._2._1);
                    System.out.println("student score: " + t._2._2);
                    System.out.println("-----------------");
                }
            });
            
            //关闭JavaSparkContext
            sc.close();
            
        }
    
    
    //结果

    student id: 1
    student name: leo
    student score: 100
    -----------------
    student id: 3
    student name: tom
    student score: 60
    -----------------
    student id: 2
    student name: jack
    student score: 90
    -----------------


    --------scala实现--------- def join() { val conf = new SparkConf().setAppName("groupByKey").setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2(1, "leo"), Tuple2(2, "jack"), Tuple2(3, "tom")) val scoreList = Array(Tuple2(1, 100),Tuple2(2, 90), Tuple2(3, 60)) val students = sc.parallelize(studentList); val scores = sc.parallelize(scoreList); val studentScores = students.join(scores) studentScores.foreach(studentScore => { println("student id:" + studentScore._1) println("student name:" + studentScore._2._1) println("student score:" + studentScore._2._1) println("==================") }) }

    cogroup:

    -------java实现--------
        private static void cogroup() {
            //创建SparkConf
            SparkConf conf = new SparkConf().setAppName("cogroup").setMaster("local");
            
            //创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //模拟集合
            List<Tuple2<Integer, String>> studentList = Arrays.asList(
                    new Tuple2<Integer, String>(1, "leo"),
                    new Tuple2<Integer, String>(2, "jack"),
                    new Tuple2<Integer, String>(3, "tom"));
            
            List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(
                    new Tuple2<Integer, Integer>(1, 100),
                    new Tuple2<Integer, Integer>(2, 90),
                    new Tuple2<Integer, Integer>(3, 60),
                    new Tuple2<Integer, Integer>(1, 70),
                    new Tuple2<Integer, Integer>(2, 80),
                    new Tuple2<Integer, Integer>(3, 50));
            
            //并行化两个RDD
            JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
            JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
            
            //使用cogroup关联两个RDD
            // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
            // cogroup,不太好讲解,希望通过动手编写我们的案例,仔细体会其中的奥妙        
            JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = students.cogroup(scores);
            
            //打印studentScores RDD
            studentScores.foreach(new VoidFunction<Tuple2<Integer,Tuple2<Iterable<String>,Iterable<Integer>>>>() {
    
                private static final long serialVersionUID = 1L;
    
                @Override
                public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception {
                    System.out.println("student id: " + t._1);
                    System.out.println("student name: " + t._2._1);
                    System.out.println("student score: " + t._2._2);
                    System.out.println("-----------------");
                    
                }
            });
            
            //关闭JavaSparkContext
            sc.close();
            
        }


    //结果

    student id: 1
    student name: [leo]
    student score: [100, 70]
    -----------------
    student id: 3
    student name: [tom]
    student score: [60, 50]
    -----------------
    student id: 2
    student name: [jack]
    student score: [90, 80]
    -----------------

    二、action实战

    1、reduce:累加

    ---------java实现---------
        private static void reduce() {
            // 创建SparkConf和JavaSparkContext
            SparkConf conf = new SparkConf()
                    .setAppName("reduce")
                    .setMaster("local");  
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            // 有一个集合,里面有1到10,10个数字,现在要对10个数字进行累加
            List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            JavaRDD<Integer> numbers = sc.parallelize(numberList);
            
            // 使用reduce操作对集合中的数字进行累加
            // reduce操作的原理:
                // 首先将第一个和第二个元素,传入call()方法,进行计算,会获取一个结果,比如1 + 2 = 3
                // 接着将该结果与下一个元素传入call()方法,进行计算,比如3 + 3 = 6
                // 以此类推
            // 所以reduce操作的本质,就是聚合,将多个元素聚合成一个元素
            int sum = numbers.reduce(new Function2<Integer, Integer, Integer>() {
                
                private static final long serialVersionUID = 1L;
    
                @Override
                public Integer call(Integer v1, Integer v2) throws Exception {
                    return v1 + v2;
                }
                
            });
            
            System.out.println("sum:" + sum);  
            
            // 关闭JavaSparkContext
            sc.close();
        }
    
    
    
    
    
    --------scala实现---------
      def reduce() {
        val conf = new SparkConf().setAppName("reduce").setMaster("local")
        val sc = new SparkContext(conf)
        
        val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
        val numbers = sc.parallelize(numberArray, 1)
        val sum = numbers.reduce(_ + _)
        
        println("sum: " + sum)
      }

    2、collect

    --------java实现---------
        private static void collect() {
            // 创建SparkConf和JavaSparkContext
            SparkConf conf = new SparkConf()
                    .setAppName("collect")
                    .setMaster("local");  
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //有一个集合,里面有1到10,10个数字,
            List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            JavaRDD<Integer> numbers = sc.parallelize(numberList);
            
            //使用map操作将集合中所有数字乘以2
            JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() {
                
                private static final long serialVersionUID = 1L;
    
                @Override
                public Integer call(Integer v1) throws Exception {
                    // TODO Auto-generated method stub
                    return v1 * 2;
                }
            });
    
            // 不用foreach action操作,在远程集群上遍历rdd中的元素,而使用collect操作,将分布在远程集群上的doubleNumbers RDD的数据拉取到本地
            // 这种方式,一般不建议使用,因为如果rdd中的数据量比较大的话,比如超过1万条
            // 那么性能会比较差,因为要从远程走大量的网络传输,将数据获取到本地
            // 此外,除了性能差,还可能在rdd中数据量特别大的情况下,发生oom异常,内存溢出
            // 因此,通常,还是推荐使用foreach action操作,来对最终的rdd元素进行处理
            List<Integer> doubleNumberList = doubleNumbers.collect();
            for(Integer num : doubleNumberList) {
                System.out.println(num);
            }
                            
            // 关闭JavaSparkContext
            sc.close();
            
        }
    
    
    
    
    
    
    -------scala实现--------
      def collect() {
        val conf = new SparkConf().setAppName("collect").setMaster("local")
        val sc = new SparkContext(conf)
        
        val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
        val numbers = sc.parallelize(numberArray, 1)
        val doubleNumbers = numbers.map { num => num * 2 }
        
        val doubleNumberArray = doubleNumbers.collect()
        
        for(num <- doubleNumberArray) {
          println(num)
        }
        
      }

    3、count

    ------java实现-------
        private static void count() {
            // 创建SparkConf和JavaSparkContext
            SparkConf conf = new SparkConf()
                    .setAppName("count")
                    .setMaster("local");  
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //有一个集合,里面有1到10,10个数字,
            List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            JavaRDD<Integer> numbers = sc.parallelize(numberList);
            
            //对rdd使用count操作,统计它有多少个元素
            long count = numbers.count();
            System.out.println(count);
                            
            // 关闭JavaSparkContext
            sc.close();
            
        }
    
    
    
    
    
    
    
    -----scala实现------
        def count() {
        val conf = new SparkConf().setAppName("count").setMaster("local")
        val sc = new SparkContext(conf)
        
        val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
        val numbers = sc.parallelize(numberArray, 1)
        val count = numbers.count()
        
        println(count)
      }

    4、take

    --------java实现-------
        private static void take() {
            // 创建SparkConf和JavaSparkContext
            SparkConf conf = new SparkConf()
                    .setAppName("take")
                    .setMaster("local");  
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //有一个集合,里面有1到10,10个数字,
            List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            JavaRDD<Integer> numbers = sc.parallelize(numberList);
            
            //take操作,与col1ect类似,也是从远程集群上,获取rdd的数据
            //但是co1lect是获取rdd的所有数据,take只是获取前n个数据
            List<Integer> top3Numbers = numbers.take(3);
            
            for(Integer num : top3Numbers) {
                System.out.println(num);
            }
                            
            // 关闭JavaSparkContext
            sc.close();
            
        }
    
    
    
    
    
    -------scala实现----------
      def take() {
        val conf = new SparkConf().setAppName("take").setMaster("local")
        val sc = new SparkContext(conf)
        
        val  numberArray = Array(1,2,3,4,5,6,7,8,9,10)
        val numbers = sc.parallelize(numberArray, 1)
        val top3Numbers = numbers.take(3)
        
        for(num <- top3Numbers) {
          println(num)
        }
      }

    5、saveAsTextFile

    ---------java实现-----------
        private static void saveAsTextFile() {
            // 创建SparkConf和JavaSparkContext
            SparkConf conf = new SparkConf()
                    .setAppName("saveAsTextFile");
    
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            //有一个集合,里面有1到10,10个数字,
            List<Integer> numberList = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            JavaRDD<Integer> numbers = sc.parallelize(numberList);
            
            //使用map操作将集合中左右数字乘以2
            JavaRDD<Integer> doubleNumbers = numbers.map(new Function<Integer, Integer>() {
                
                private static final long serialVersionUID = 1L;
    
                @Override
                public Integer call(Integer v1) throws Exception {
                    // TODO Auto-generated method stub
                    return v1 * 2;
                }
            });
    
            // 直接将rdd中的数据,保存在HFDS文件中
            // 但是要注意,我们这里只能指定文件夹,也就是目录
            // doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
            // 那么实际上,会保存为目录中的/double_number.txt/part-00000文件
            doubleNumbers.saveAsTextFile("hdfs://spark1:9000/double_number.txt");
                                        
            // 关闭JavaSparkContext
            sc.close();
            
        }
    
    
    ##打包--上传--运行
    
    [root@spark1 java]# cat saveASTextFile.sh         #运行脚本
    /usr/local/spark/bin/spark-submit 
    --class cn.spark.study.core.ActionOperation 
    --num-executors 3 
    --driver-memory 100m 
    --executor-memory 100m 
    --executor-cores 3 
    /usr/local/spark-study/java/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar 

    6、countByKey

    ------java实现-------
        private static void countByKey() {
            // 创建SparkConf
            SparkConf conf = new SparkConf()
                    .setAppName("countByKey")  
                    .setMaster("local");
            // 创建JavaSparkContext
            JavaSparkContext sc = new JavaSparkContext(conf);
            
            // 模拟集合
            List<Tuple2<String, String>> scoreList = Arrays.asList(
                    new Tuple2<String, String>("class1", "leo"),
                    new Tuple2<String, String>("class2", "jack"),
                    new Tuple2<String, String>("class1", "marry"),
                    new Tuple2<String, String>("class2", "tom"),
                    new Tuple2<String, String>("class2", "david"));  
            
            // 并行化集合,创建JavaPairRDD
            JavaPairRDD<String, String> students = sc.parallelizePairs(scoreList);
            
            // 对rdd应用countByKey操作,统计每个班级的学生人数,也就是统计每个key对应的元素个数
            // 这就是countByKey的作用
            // countByKey返回的类型,直接就是Map<String, Object>
            Map<String, Object> studentCounts = students.countByKey();
            
            for(Map.Entry<String, Object> studentCount : studentCounts.entrySet()) {
                System.out.println(studentCount.getKey() + ": " + studentCount.getValue());  
            }
            
            // 关闭JavaSparkContext
            sc.close();
        }
    
    
    //结果

    class1: 2
    class2: 3


    --------scala实现---------- def countByKey() { val conf = new SparkConf() .setAppName("countByKey") .setMaster("local") val sc = new SparkContext(conf) val studentList = Array(Tuple2("class1", "leo"), Tuple2("class2", "jack"), Tuple2("class1", "tom"), Tuple2("class2", "jen"), Tuple2("class2", "marry")) val students = sc.parallelize(studentList, 1) val studentCounts = students.countByKey() println(studentCounts) }

    7、foreach

    foreach,遍历RDD的元素,在远程集群上执行

    ----java实现-----
    public static void foreach() {
            
        // 创建SparkConf
            
        SparkConf sparkConf = new SparkConf().setAppName("foreachJava").setMaster("local");
       
         
        // 创建JavaSparkContext
           
         JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
     
    
           
         // 有一个集合,里面有1到10,10个数字,
           
         // 创建集合
            
        List<Integer> nums = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
            
    
        // 并行化集合,创建初始化RDD
     
            
        JavaRDD<Integer> numsRDD = javaSparkContext.parallelize(nums);
           
         numsRDD.foreach(new VoidFunction<Integer>() {
                
            @Override
                
            public void call(Integer integer) throws Exception {
                    
                System.out.println("integer = " + integer);
                
             }
           
           });
     
            
    
        // 关闭javaSparkContext
           
         javaSparkContext.close();
     
        
    }
  • 相关阅读:
    docker
    SAML(Security assertion markUp language) 安全断言标记语言
    kafka消息系统
    OBS 对象存储技术学习
    AOP之AspectJ
    sql查漏补缺
    todolist
    springboot 注解整理
    前端之jQuery
    前端之BOM和DOM
  • 原文地址:https://www.cnblogs.com/weiyiming007/p/11149965.html
Copyright © 2011-2022 走看看