n随机器:取值有n种情况的随机器
均匀n随机器:各种取值概率相等的n随机器
问题:由n随机器构造m随机器
具体问题:
- 均匀到不均匀
- 不均匀到均匀
- 不均匀到均匀
- 均匀到均匀
- 大均匀到小均匀
- 小均匀到大均匀
本文研究不均匀到均匀随机器。
重复试验k次,得到若干个均匀n随机器,然后利用这些均匀随机器构建想要的均匀随机器。
下面算法证明这个思路是正确的。
import random
import numpy as np
x = 0.3
y = 0.7
def rg():
if random.random() < x:
return 0
else:
return 1
k = 10
a = dict()
def build_table():
cnt_map = dict()
for i in range(2 ** k):
s = np.array(list(map(int, bin(i)[2:])))
cnt0 = np.count_nonzero(s == 1)
if cnt0 not in cnt_map:
cnt_map[cnt0] = []
cnt_map[cnt0].append(i)
for group in cnt_map.values():
while len(group) > 1:
bit_cnt = int(np.log2(len(group)))
for ind in range(2 ** bit_cnt):
now = np.zeros(bit_cnt, dtype=np.int32)
for j in range(bit_cnt):
now[j] = 1 if ind & (1 << j) else 0
if len(now):
a[group[ind]] = now
group = group[2 ** bit_cnt:]
cache = []
called = 0
def my_rg():
global called
if len(cache):
return cache.pop()
while 1:
called += k
v = [rg() for i in range(k)]
v = int(''.join(map(str, v)), 2)
if v in a:
cache.extend(a[v])
return my_rg()
build_table()
ans = np.array([my_rg() for i in range(10000)])
print(np.count_nonzero(ans))
print(called / len(ans))
如何寻找k?怎样找到最合适的试验次数,使得获得每个随机数调用的随机器次数尽量少。
import numpy as np
import pylab as plt
from scipy.misc import comb
x = 0.3
y = 0.7
def try_k(k):
# 尝试k次
p = np.array([x ** i * y ** (k - i) for i in range(k + 1)]) # 每种类型发生的概率
cnt = np.array([comb(k, i) for i in range(k + 1)]) # 每种类型的个数
break_prob_list = []
can_get_list = []
for group_cnt, prob in zip(cnt, p):
while group_cnt > 1:
can_get = int(np.log2(group_cnt))
if not can_get: break
break_prob = 2 ** can_get * prob
break_prob_list.append(break_prob)
can_get_list.append(can_get)
group_cnt -= 2 ** can_get
break_prob = np.array(break_prob_list)
can_get = np.array(can_get_list)
return k / np.sum(break_prob * can_get)
min_index = None
min_value = 0
ans = []
max_try = 100
for i in range(2, max_try):
now = try_k(i)
print(i, now)
ans.append(now)
if min_index is None or min_value > now:
min_value = now
min_index = i
print('最佳答案', min_index, min_value)
plt.plot(list(range(2, max_try)), ans)
plt.show()