zoukankan      html  css  js  c++  java
  • [转]numpy 100道练习题

    100 numpy exercise


    Numpy是Python做数据分析必须掌握的基础库之一,非常适合刚学习完Numpy基础的同学,完成以下习题可以帮助你更好的掌握这个基础库。

    Python版本:Python 3.6.2

    Numpy版本:Numpy 1.13.1

    1. 导入numpy库并取别名为np (★☆☆)

    (提示: import … as …)

    import numpy as np
    

    2. 打印输出numpy的版本和配置信息 (★☆☆)

    (提示: np.__verison__, np.show_config)

    print (np.__version__)
    np.show_config()
    

    3. 创建长度为10的零向量 (★☆☆)

    (提示: np.zeros)

    Z = np.zeros(10)
    print (Z)
    

    4. 获取数组所占内存大小 (★☆☆)

    (提示: size, itemsize)

    Z = np.zeros((10, 10))
    print (Z.size * Z.itemsize)
    

    5. 怎么用命令行获取numpy add函数的文档说明? (★☆☆)

    (提示: np.info)

    np.info(np.add)
    

    6. 创建一个长度为10的零向量,并把第五个值赋值为1 (★☆☆)

    (提示: array[4])

    Z = np.zeros(10)
    Z[4] = 1
    print (Z)
    

    7. 创建一个值域为10到49的向量 (★☆☆)

    (提示: np.arange)

    Z = np.arange(10, 50)
    print (Z)
    

    8**. 将一个向量进行反转(第一个元素变为最后一个元素) (★☆☆)

    (提示: array[::-1])

    Z = np.arange(50)
    Z = Z[::-1]
    print (Z)
    

    9. 创建一个3x3的矩阵,值域为0到8**(★☆☆)

    (提示: reshape)

    Z = np.arange(9).reshape(3, 3)
    print (Z)
    

    10. 从数组[1, 2, 0, 0, 4, 0]中找出非0元素的位置索引 (★☆☆)

    (提示: np.nonzero)

    nz = np.nonzero([1, 2, 0, 0, 4, 0])
    print (NZ)
    

    11. 创建一个3x3的单位矩阵 (★☆☆)

    (提示: np.eye)

    Z = np.eye(3)
    print (Z)
    

    12. 创建一个3x3x3的随机数组**(★☆☆)

    (提示: np.random.random)

    Z = np.random.random((3, 3, 3))
    print (Z)
    

    13. 创建一个10x10的随机数组,并找出该数组中的最大值与最小值**(★☆☆)

    (提示: max, min)

    Z = np.random.random((10, 10))
    Zmax, Zmin = Z.max(), Z.min()
    print (Z.max, Z.min)
    

    14. 创建一个长度为30的随机向量,并求它的平均值 (★☆☆)

    (提示: mean)

    Z = np.random.random(30)
    mean = Z.mean()
    print (mean)
    

    15. 创建一个2维数组,该数组边界值为1,内部的值为0 (★☆☆)

    (提示: array[1:-1, 1:-1])

    Z = np.ones((10, 10))
    Z[1:-1, 1:-1] = 0
    print (Z)
    

    16. 如何用0来填充一个数组的边界? (★☆☆)

    (提示: np.pad)

    Z = np.ones((10, 10))
    Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)
    print (Z)
    

    17. 下面表达式运行的结果是什么?**(★☆☆)

    (提示: NaN = not a number, inf = infinity)

    (提示:NaN : 不是一个数,inf : 无穷)

    # 表达式							# 结果
    0 * np.nan						  nan
    np.nan == np.nan				  False
    np.inf > np.nan					  False
    np.nan - np.nan					  nan
    0.3 == 3 * 0.1					  False
    

    18. 创建一个5x5的矩阵,且设置值1, 2, 3, 4在其对角线下面一行**(★☆☆)

    (提示: np.diag)

    Z = np.diag([1, 2, 3, 4], k=-1) #k=-1保证了偏移
    print (Z)
    

    输出为:

    array([[0, 0, 0, 0, 0],
           [1, 0, 0, 0, 0],
           [0, 2, 0, 0, 0],
           [0, 0, 3, 0, 0],
           [0, 0, 0, 4, 0]])
    

    19. 创建一个8x8的国际象棋棋盘矩阵(黑块为0,白块为1) (★☆☆)

    (提示: array[::2])

    Z = np.zeros((8, 8), dtype=int)
    Z[1::2, ::2] = 1
    Z[::2, 1::2] = 1
    print (Z)
    

    20. 思考一下形状为(6, 7, 8)的数组的形状,且第100个元素的索引(x, y, z)分别是什么?**(★☆☆)

    (提示: np.unravel_index)

    print (np.unravel_index(100, (6, 7, 8)))
    

    21. 用tile函数创建一个8x8的棋盘矩阵**(★☆☆)

    (提示: np.tile)

    Z = np.tile(np.array([[1, 0], [0, 1]]), (4, 4))
    print (Z)
    

    22. 对5x5的随机矩阵进行归一化 (★☆☆)

    (提示: (x - min) / (max - min))

    Z = np.random.random((5, 5))
    Zmax, Zmin = Z.max(), Z.min()
    Z = (Z-Zmin)/(Zmax-Zmin)
    print (Z)
    

    23. 创建一个dtype来表示颜色(RGBA) (★☆☆)

    (提示: np.dtype)

    color = np.dtype([("r", np.ubyte, 1),
                      ("g", np.ubyte, 1),
                      ("b", np.ubyte, 1),
                      ("a", np.ubyte, 1)])
    c = np.array((255, 255, 255, 1), dtype=color)
    print (c)
    
    Out[80]:
    array((255, 255, 255, 1),
          dtype=[('r', 'u1'), ('g', 'u1'), ('b', 'u1'), ('a', 'u1')])
    

    24. 一个5x3的矩阵和一个3x2的矩阵相乘,结果是什么?**(★☆☆)

    (提示: np.dot | @)

    Z = np.dot(np.zeros((5, 3)), np.zeros((3, 2)))
    # 或者
    Z = np.zeros((5, 3))@ np.zeros((3, 2))
    print (Z)
    

    25. 给定一个一维数组把它索引从3到8的元素求相反数 (★☆☆)

    (提示: >, <=)

    Z = np.arange(11)
    Z[(3 <= Z) & (Z < 8)] *= -1
    print (Z)
    

    26. 下面的脚本的结果是什么? (★☆☆)

    (提示: np.sum)

    # Author: Jake VanderPlas				# 结果
    
    print(sum(range(5),-1))					9
    from numpy import *						
    print(sum(range(5),-1))					10    #numpy.sum(a, axis=None)
    

    27. 关于整形的向量Z下面哪些表达式正确? (★☆☆)

    Z**Z						True
    2 << Z >> 2					False
    Z <- Z						True
    1j*Z						True  #复数			
    Z/1/1						True
    Z<Z>Z						False
    

    28. 下面表达式的结果分别是什么? (★☆☆)

    np.array(0) / np.array(0)							nan
    np.array(0) // np.array(0)							0
    np.array([np.nan]).astype(int).astype(float)		-2.14748365e+09
    

    29. 如何从零位开始舍入浮点数组? (★☆☆)

    (提示: np.uniform, np.copysign, np.ceil, np.abs)

    # Author: Charles R Harris
    
    Z = np.random.uniform(-10,+10,10)
    print (np.copysign(np.ceil(np.abs(Z)), Z))
    

    30. 如何找出两个数组公共的元素? (★☆☆)

    (提示: np.intersect1d)

    Z1 = np.random.randint(0, 10, 10)
    Z2 = np.random.randint(0, 10, 10)
    print (np.intersect1d(Z1, Z2))
    

    numpy集合合并np.unique(np.concat(a,b))

    31. 如何忽略numpy的警告信息(不推荐)? (★☆☆)

    (提示: np.seterr, np.errstate)

    # Suicide mode on
    defaults = np.seterr(all="ignore")
    Z = np.ones(1) / 0
    
    # Back to sanity
    _ = np.seterr(**defaults)
    
    # 另一个等价的方式, 使用上下文管理器(context manager)
    with np.errstate(divide='ignore'):
        Z = np.ones(1) / 0
    

    32. 下面的表达式是否为真? (★☆☆)

    (提示: 虚数)

    np.sqrt(-1) == np.emath.sqrt(-1)	 False
    

    33. 如何获得昨天,今天和明天的日期? (★☆☆)

    (提示: np.datetime64, np.timedelta64)

    yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')
    today = np.datetime64('today', 'D')
    tomorrow = np.datetime64('today', 'D') + np.timedelta64(1, 'D')
    

    34. 怎么获得所有与2016年7月的所有日期? (★★☆)

    (提示: np.arange(dtype=datetime64['D']))

    Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')
    print (Z)
    

    35. 如何计算 ((A+B)*(-A/2)) (不使用中间变量)? (★★☆)

    合理使用out可以提升时空效率。
    (提示: np.add(out=), np.negative(out=), np.multiply(out=), np.divide(out=))

    A = np.ones(3) * 1
    B = np.ones(3) * 1
    C = np.ones(3) * 1
    np.add(A, B, out=B)
    np.divide(A, 2, out=A)
    np.negative(A, out=A)
    np.multiply(A, B, out=A)
    

    36. 用5种不同的方法提取随机数组中的整数部分 (★★☆)

    (提示: %, np.floor, np.ceil, astype, np.trunc)

    Z = np.random.uniform(0, 10, 10)
    print (Z - Z % 1)
    print (np.floor(Z))
    print (np.cell(Z)-1)
    print (Z.astype(int))
    print (np.trunc(Z))
    

    37. 创建一个5x5的矩阵且每一行的值范围为从0到4 (★★☆)

    (提示: np.arange)

    Z = np.zeros((5, 5))
    Z += np.arange(5)
    print (Z)
    

    38. 如何用一个生成10个整数的函数来构建数组 (★☆☆)

    (提示: np.fromiter)

    def generate():
        for x in range(10):
          yield x
    Z = np.fromiter(generate(), dtype=float, count=-1)
    print (Z)
    

    39. 创建一个大小为10的向量, 值域为0到1,不包括0和1 (★★☆)

    (提示: np.linspace)

    Z = np.linspace(0, 1, 12, endpoint=True)[1: -1]
    print (Z)
    

    40. 创建一个大小为10的随机向量,并把它排序 (★★☆)

    (提示: sort)

    Z = np.random.random(10)
    Z.sort()
    print (Z)
    

    另一种复杂写法:按照下标进行排序。Z=Z[np.argsort(Z)]

    41. 对一个小数组进行求和有没有办法比np.sum更快? (★★☆)

    (提示: np.add.reduce)

    # Author: Evgeni Burovski
    
    Z = np.arange(10)
    np.add.reduce(Z)
    
    # np.add.reduce 是numpy.add模块中的一个ufunc(universal function)函数,C语言实现
    

    等价于np.cumsum(Z)

    42. 如何判断两随机数组相等 (★★☆)

    (提示: np.allclose, np.array_equal)

    A = np.random.randint(0, 2, 5)
    B = np.random.randint(0, 2, 5)
    
    # 假设array的形状(shape)相同和一个误差容限(tolerance)
    equal = np.allclose(A,B)
    print(equal)
    
    # 检查形状和元素值,没有误差容限(值必须完全相等)
    equal = np.array_equal(A,B)
    print(equal)
    

    43. 把数组变为只读 (★★☆)

    (提示: flags.writeable)

    Z = np.zeros(5)
    Z.flags.writeable = False
    Z[0] = 1
    

    44. 将一个10x2的笛卡尔坐标矩阵转换为极坐标 (★★☆)

    (提示: np.sqrt, np.arctan2)

    Z = np.random.random((10, 2))
    X, Y = Z[:, 0], Z[:, 1]
    R = np.sqrt(X**2 + Y**2)
    T = np.arctan2(Y, X)
    print (R)
    print (T)
    

    45. 创建一个大小为10的随机向量并且将该向量中最大的值替换为0**(★★☆)

    (提示: argmax)

    Z = np.random.random(10)
    Z[Z.argmax()] = 0
    print (Z)
    

    46. 创建一个结构化数组,其中xy坐标覆盖[0, 1]x[1, 0]区域 (★★☆)

    (提示: np.meshgrid)

    Z = np.zeros((5, 5), [('x', float), ('y', float)])
    Z['x'], Z['y'] = np.meshgrid(np.linspace(0, 1, 5), np.linspace(0, 1, 5))
    print (Z)
    

    4**7. 给定两个数组XY,构造柯西(Cauchy)矩阵C ($C_{ij}=frac{1}{x_i-y_j}$) (★★☆)

    (提示: np.subtract.outer)

    # Author: Evgeni Burovski
    
    X = np.arange(8)
    Y = X + 0.5
    C = 1.0 / np.subtract.outer(X, Y)
    print (C)
    print(np.linalg.det(C)) # 计算行列式
    

    48. 打印每个numpy 类型的最小和最大可表示值 (★★☆)

    (提示: np.iinfo, np.finfo, eps)

    for dtype in [np.int8, np.int32, np.int64]:
       print(np.iinfo(dtype).min)
       print(np.iinfo(dtype).max)
    for dtype in [np.float32, np.float64]:
       print(np.finfo(dtype).min)
       print(np.finfo(dtype).max)
       print(np.finfo(dtype).eps)
    

    49. 如何打印数组中所有的值?**(★★☆)

    (提示: np.set_printoptions)

    np.set_printoptions(threshold=np.nan)
    Z = np.zeros((16,16))
    print(Z)
    

    50. 如何在数组中找到与给定标量接近的值? (★★☆)

    (提示: argmin)

    Z = np.arange(100)
    v = np.random.uniform(0, 100)
    index = (np.abs(Z-v)).argmin()
    print(Z[index])
    

    51. 创建表示位置(x, y)和颜色(r, g, b, a)的结构化数组 (★★☆)

    (提示: dtype)

    Z = np.zeros(10, [('position', [('x', float, 1), 
                                    ('y', float, 1)]),
                      ('color',    [('r', float, 1), 
                                    ('g', float, 1), 
                                    ('b', float, 1)])])
    print (Z)
    

    52. 思考形状为(100, 2)的随机向量,求出点与点之间的距离 (★★☆)

    (提示: np.atleast_2d, T, np.sqrt)

    Z = np.random.random((100, 2))
    X, Y = np.atleast_2d(Z[:, 0], Z[:, 1])
    D = np.sqrt((X-X.T)**2 + (Y-Y.T)**2)
    print (D)
    
    # 使用scipy库可以更快
    import scipy.spatial
    
    Z = np.random.random((100,2))
    D = scipy.spatial.distance.cdist(Z,Z)
    print(D)
    

    53. 如何将类型为float(32位)的数组类型转换为integer(32位)? (★★☆)

    (提示: astype(copy=False))

    Z = np.arange(10, dtype=np.int32)
    Z = Z.astype(np.float32, copy=False)
    print(Z)
    

    54. 如何读取下面的文件? (★★☆)

    (提示: np.genfromtxt)

    1, 2, 3, 4, 5
    6,  ,  , 7, 8
     ,  , 9,10,11
    
    # 先把上面保存到文件example.txt中
    # 这里不使用StringIO, 因为Python2 和Python3 在这个地方有兼容性问题
    Z = np.genfromtxt("example.txt", delimiter=",")  
    print(Z)
    

    55. numpy数组枚举(enumerate)的等价操作? (★★☆)

    (提示: np.ndenumerate, np.ndindex)

    Z = np.arange(9).reshape(3,3)
    for index, value in np.ndenumerate(Z):
        print(index, value)
    for index in np.ndindex(Z.shape):
        print(index, Z[index])
    

    56. 构造一个二维高斯矩阵**(★★☆)

    (提示: np.meshgrid, np.exp)

    X, Y = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10))
    D = np.sqrt(X**2 + Y**2)
    sigma, mu = 1.0, 0.0
    G = np.exp(-( (D-mu)**2 / (2.0*sigma**2) ))
    print (G)
    

    57. 如何在二维数组的随机位置放置p个元素? (★★☆)

    (提示: np.put, np.random.choice)

    # Author: Divakar
    
    n = 10
    p = 3
    Z = np.zeros((n,n))
    np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
    print(Z)
    

    58. 减去矩阵每一行的平均值 (★★☆)

    (提示: mean(axis=,keepdims=))

    # Author: Warren Weckesser
    
    X = np.random.rand(5, 10)
    
    # 新
    Y = X - X.mean(axis=1, keepdims=True)
    
    # 旧
    Y = X - X.mean(axis=1).reshape(-1, 1)
    
    print(Y)
    

    59. 如何对数组通过第n列进行排序? (★★☆)

    (提示: argsort)

    # Author: Steve Tjoa
    
    Z = np.random.randint(0,10,(3,3))
    print(Z)
    print(Z[ Z[:,1].argsort() ])
    

    60. 如何判断一个给定的二维数组存在空列? (★★☆)

    (提示: any, ~)

    # Author: Warren Weckesser
    
    Z = np.random.randint(0,3,(3,10))
    print((~Z.any(axis=0)).any())
    

    61. 从数组中找出与给定值最接近的值 (★★☆)

    (提示: np.abs, argmin, flat)

    Z = np.random.uniform(0,1,10)
    z = 0.5
    m = Z.flat[np.abs(Z - z).argmin()]
    print(m)
    

    62. 思考形状为(1, 3)和(3, 1)的两个数组形状,如何使用迭代器计算它们的和? (★★☆)

    (提示: np.nditer)

    A = np.arange(3).reshape(3, 1)
    B = np.arange(3).reshape(1, 3)
    it = np.nditer([A, B, None])
    for x, y, z in it:
        z[...] = x + y
    print (it.operands[2])
    

    63. 创建一个具有name属性的数组类 (★★☆)

    (提示: class method)

    class NameArray(np.ndarray):
        def __new__(cls, array, name="no name"):
            obj = np.asarray(array).view(cls)
            obj.name = name
            return obj
        def __array_finalize__(self, obj):
            if obj is None: return
            self.info = getattr(obj, 'name', "no name")
    
    Z = NamedArray(np.arange(10), "range_10")
    print (Z.name)
    

    64. 给定一个向量,如何让在第二个向量索引的每个元素加1(注意重复索引)? (★★★)

    (提示: np.bincount | np.add.at)

    # Author: Brett Olsen
    
    Z = np.ones(10)
    I = np.random.randint(0,len(Z),20)
    Z += np.bincount(I, minlength=len(Z))
    print(Z)
    
    # Another solution
    # Author: Bartosz Telenczuk
    np.add.at(Z, I, 1)
    print(Z)
    

    65. 如何根据索引列表I将向量X的元素累加到数组F? (★★★)

    (提示: np.bincount)

    # Author: Alan G Isaac
    
    X = [1,2,3,4,5,6]
    I = [1,3,9,3,4,1]
    F = np.bincount(I,X)
    print(F)
    

    66. 思考(dtype = ubyte)的(w, h, 3)图像,计算唯一颜色的值**(★★★)

    (提示: np.unique)

    # Author: Nadav Horesh
    
    w,h = 16,16
    I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
    F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
    n = len(np.unique(F))
    print(np.unique(I))
    

    67. 思考如何求一个四维数组最后两个轴的数据和**(★★★)

    (提示: sum(axis=(-2,-1)))

    A = np.random.randint(0,10,(3,4,3,4))
    # 传递一个元组(numpy 1.7.0)
    sum = A.sum(axis=(-2,-1))
    print(sum)
    
    # 将最后两个维度压缩为一个
    # (适用于不接受轴元组参数的函数)
    sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
    print(sum)
    

    68. 考虑一维向量D,如何使用相同大小的向量S来计算D的子集的均值,其描述子集索引? (★★★)

    (提示: np.bincount)

    # Author: Jaime Fernández del Río
    
    D = np.random.uniform(0,1,100)
    S = np.random.randint(0,10,100)
    D_sums = np.bincount(S, weights=D)
    D_counts = np.bincount(S)
    D_means = D_sums / D_counts
    print(D_means)
    
    # Pandas solution as a reference due to more intuitive code
    import pandas as pd
    print(pd.Series(D).groupby(S).mean())
    

    69. **如何获得点积的对角线? (★★★)

    (提示: np.diag)

    # Author: Mathieu Blondel
    
    A = np.random.uniform(0,1,(5,5))
    B = np.random.uniform(0,1,(5,5))
    
    # Slow version  
    np.diag(np.dot(A, B))
    
    # Fast version
    np.sum(A * B.T, axis=1)
    
    # Faster version
    np.einsum("ij,ji->i", A, B)
    

    70.考虑向量[1,2,3,4,5],如何建立一个新的向量,在每个值之间交错有3个连续的零? (★★★)

    (提示: array[::4])

    # Author: Warren Weckesser
    
    Z = np.array([1,2,3,4,5])
    nz = 3
    Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
    Z0[::nz+1] = Z
    print(Z0)
    

    71. 考虑一个维度(5,5,3)的数组,如何将其与一个(5,5)的数组相乘? (★★★)

    (提示: array[:, :, None])

    A = np.ones((5,5,3))
    B = 2*np.ones((5,5))
    print(A * B[:,:,None])
    

    72. 如何对一个数组中任意两行做交换? (★★★)

    (提示: array[[]] = array[[]])

    # Author: Eelco Hoogendoorn
    
    A = np.arange(25).reshape(5,5)
    A[[0,1]] = A[[1,0]]
    print(A)
    

    73. 思考描述10个三角形(共享顶点)的一组10个三元组,找到组成所有三角形的唯一线段集 (★★★)

    (提示: repeat, np.roll, np.sort, view, np.unique)

    # Author: Nicolas P. Rougier
    
    faces = np.random.randint(0,100,(10,3))
    F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
    F = F.reshape(len(F)*3,2)
    F = np.sort(F,axis=1)
    G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
    G = np.unique(G)
    print(G)
    

    74. 给定一个二进制的数组C,如何生成一个数组A满足np.bincount(A)==C? (★★★)

    (提示: np.repeat)

    # Author: Jaime Fernández del Río
    
    C = np.bincount([1,1,2,3,4,4,6])
    A = np.repeat(np.arange(len(C)), C)
    print(A)
    

    75. 如何通过滑动窗口计算一个数组的平均数? (★★★)

    (提示: np.cumsum)

    # Author: Jaime Fernández del Río
    
    def moving_average(a, n=3) :
        ret = np.cumsum(a, dtype=float)
        ret[n:] = ret[n:] - ret[:-n]
        return ret[n - 1:] / n
    Z = np.arange(20)
    print(moving_average(Z, n=3))
    

    76. 思考以为数组Z,构建一个二维数组,其第一行是(Z[0],Z[1],Z[2]), 然后每一行移动一位,最后一行为 (Z[-3],Z[-2],Z[-1]) (★★★)

    (提示: from numpy.lib import stride_tricks)

    # Author: Joe Kington / Erik Rigtorp
    from numpy.lib import stride_tricks
    
    def rolling(a, window):
        shape = (a.size - window + 1, window)
        strides = (a.itemsize, a.itemsize)
        return stride_tricks.as_strided(a, shape=shape, strides=strides)
    Z = rolling(np.arange(10), 3)
    print(Z)
    

    77. 如何对布尔值取反,或改变浮点数的符号(sign)? (★★★)

    (提示: np.logical_not, np.negative)

    # Author: Nathaniel J. Smith
    
    Z = np.random.randint(0,2,100)
    np.logical_not(Z, out=Z)
    
    Z = np.random.uniform(-1.0,1.0,100)
    np.negative(Z, out=Z)
    

    78. 思考两组点集P0P1去描述一组线(二维)和一个点p,如何计算点p到每一条线 i (P0[i],P1[i])的距离? (★★★)

    def distance(P0, P1, p):
        T = P1 - P0
        L = (T**2).sum(axis=1)
        U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
        U = U.reshape(len(U),1)
        D = P0 + U*T - p
        return np.sqrt((D**2).sum(axis=1))
    
    P0 = np.random.uniform(-10,10,(10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p  = np.random.uniform(-10,10,( 1,2))
    print(distance(P0, P1, p))
    

    79. 考虑两组点集P0P1去描述一组线(二维)和一组点集P,如何计算每一个点 j(P[j]) 到每一条线 i (P0[i],P1[i])的距离? (★★★)

    # Author: Italmassov Kuanysh
    
    # based on distance function from previous question
    P0 = np.random.uniform(-10, 10, (10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p = np.random.uniform(-10, 10, (10,2))
    print(np.array([distance(P0,P1,p_i) for p_i in p]))
    

    80. 思考一个任意的数组,编写一个函数,该函数提取一个具有固定形状的子部分,并以一个给定的元素为中心(在该部分填充值) (★★★)

    (提示: minimum, maximum)

    # Author: Nicolas Rougier
    
    Z = np.random.randint(0,10,(10,10))
    shape = (5,5)
    fill  = 0
    position = (1,1)
    
    R = np.ones(shape, dtype=Z.dtype)*fill
    P  = np.array(list(position)).astype(int)
    Rs = np.array(list(R.shape)).astype(int)
    Zs = np.array(list(Z.shape)).astype(int)
    
    R_start = np.zeros((len(shape),)).astype(int)
    R_stop  = np.array(list(shape)).astype(int)
    Z_start = (P-Rs//2)
    Z_stop  = (P+Rs//2)+Rs%2
    
    R_start = (R_start - np.minimum(Z_start,0)).tolist()
    Z_start = (np.maximum(Z_start,0)).tolist()
    R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
    Z_stop = (np.minimum(Z_stop,Zs)).tolist()
    
    r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
    z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
    R[r] = Z[z]
    print(Z)
    print(R)
    

    81. 考虑一个数组Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14],如何生成一个数组R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ...,[11,12,13,14]]? (★★★)

    (提示: stride_tricks.as_strided)

    # Author: Stefan van der Walt
    
    Z = np.arange(1,15,dtype=np.uint32)
    R = stride_tricks.as_strided(Z,(11,4),(4,4))
    print(R)
    

    82. 计算矩阵的秩 (★★★)

    (提示: np.linalg.svd)

    # Author: Stefan van der Walt
    
    Z = np.random.uniform(0,1,(10,10))
    U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
    rank = np.sum(S > 1e-10)
    print(rank)
    

    83. 如何找出数组中出现频率最高的值?**(★★★)

    (提示: np.bincount, argmax)

    Z = np.random.randint(0,10,50)
    print(np.bincount(Z).argmax())
    

    84. 从一个10x10的矩阵中提取出连续的3x3区块**(★★★)

    (提示: stride_tricks.as_strided)

    # Author: Chris Barker
    
    Z = np.random.randint(0,5,(10,10))
    n = 3
    i = 1 + (Z.shape[0]-3)
    j = 1 + (Z.shape[1]-3)
    C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
    print(C)
    

    85.创建一个满足 Z[i,j] == Z[j,i]的二维数组子类 (★★★)

    (提示: class method)

    # Author: Eric O. Lebigot
    # Note: only works for 2d array and value setting using indices
    
    class Symetric(np.ndarray):
        def __setitem__(self, index, value):
            i,j = index
            super(Symetric, self).__setitem__((i,j), value)
            super(Symetric, self).__setitem__((j,i), value)
    
    def symetric(Z):
        return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
    
    S = symetric(np.random.randint(0,10,(5,5)))
    S[2,3] = 42
    print(S)
    

    86. 考虑p个 nxn 矩阵和一组形状为(n,1)的向量,如何直接计算p个矩阵的乘积(n,1)? (★★★)

    (提示: np.tensordot)

    # Author: Stefan van der Walt
    
    p, n = 10, 20
    M = np.ones((p,n,n))
    V = np.ones((p,n,1))
    S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
    print(S)
    
    # It works, because:
    # M is (p,n,n)
    # V is (p,n,1)
    # Thus, summing over the paired axes 0 and 0 (of M and V independently),
    # and 2 and 1, to remain with a (n,1) vector.
    

    87. 对于一个16x16的数组,如何得到一个区域的和(区域大小为4x4)? (★★★)

    (提示: np.add.reduceat)

    # Author: Robert Kern
    
    Z = np.ones((16,16))
    k = 4
    S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1)
    print(S)
    

    88. 如何利用numpy数组实现Game of Life? (★★★)

    (提示: Game of Life , Game of Life有哪些图形?)

    # Author: Nicolas Rougier
    
    def iterate(Z):
        # Count neighbours
        N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
             Z[1:-1,0:-2]                + Z[1:-1,2:] +
             Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])
    
        # Apply rules
        birth = (N==3) & (Z[1:-1,1:-1]==0)
        survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
        Z[...] = 0
        Z[1:-1,1:-1][birth | survive] = 1
        return Z
    
    Z = np.random.randint(0,2,(50,50))
    for i in range(100): Z = iterate(Z)
    print(Z)
    

    89. 如何找到一个数组的第n个最大值?** (★★★)

    (提示: np.argsort | np.argpartition)

    Z = np.arange(10000)
    np.random.shuffle(Z)
    n = 5
    
    # Slow
    print (Z[np.argsort(Z)[-n:]])
    
    # Fast
    print (Z[np.argpartition(-Z,n)[:n]])
    

    90. 给定任意个数向量,创建笛卡尔积(每一个元素的每一种组合) (★★★)

    (提示: np.indices)

    # Author: Stefan Van der Walt
    
    def cartesian(arrays):
        arrays = [np.asarray(a) for a in arrays]
        shape = (len(x) for x in arrays)
    
        ix = np.indices(shape, dtype=int)
        ix = ix.reshape(len(arrays), -1).T
    
        for n, arr in enumerate(arrays):
            ix[:, n] = arrays[n][ix[:, n]]
    
        return ix
    
    print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
    

    91. 如何从一个常规数组中创建记录数组(record array)? (★★★)

    (提示: np.core.records.fromarrays)

    Z = np.array([("Hello", 2.5, 3),
                  ("World", 3.6, 2)])
    R = np.core.records.fromarrays(Z.T, 
                                   names='col1, col2, col3',
                                   formats = 'S8, f8, i8')
    print(R)
    

    92. 思考一个大向量Z, 用三种不同的方法计算它的立方 (★★★)

    (提示: np.power, *, np.einsum)

    # Author: Ryan G.
    
    x = np.random.rand(5e7)
    
    %timeit np.power(x,3)
    %timeit x*x*x
    %timeit np.einsum('i,i,i->i',x,x,x)
    

    93. 考虑两个形状分别为(8,3)(2,2)的数组AB. 如何在数组A中找到满足包含B中元素的行?(不考虑B中每行元素顺序)? (★★★)

    (提示: np.where)

    # Author: Gabe Schwartz
    
    A = np.random.randint(0,5,(8,3))
    B = np.random.randint(0,5,(2,2))
    
    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = np.where(C.any((3,1)).all(1))[0]
    print(rows)
    

    94. 思考一个10x3的矩阵,如何分解出有不全相同值的行 (如 [2,2,3])** (★★★)

    # Author: Robert Kern
    
    Z = np.random.randint(0,5,(10,3))
    print(Z)
    # solution for arrays of all dtypes (including string arrays and record arrays)
    E = np.all(Z[:,1:] == Z[:,:-1], axis=1)
    U = Z[~E]
    print(U)
    # soluiton for numerical arrays only, will work for any number of columns in Z
    U = Z[Z.max(axis=1) != Z.min(axis=1),:]
    print(U)
    

    95. 将一个整数向量转换为二进制矩阵 (★★★)

    (提示: np.unpackbits)

    # Author: Warren Weckesser
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
    B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
    print(B[:,::-1])
    
    # Author: Daniel T. McDonald
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
    print(np.unpackbits(I[:, np.newaxis], axis=1))
    

    96. 给定一个二维数组,如何提取出唯一的行?**(★★★)

    (提示: np.ascontiguousarray)

    # Author: Jaime Fernández del Río
    
    Z = np.random.randint(0,2,(6,3))
    T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    _, idx = np.unique(T, return_index=True)
    uZ = Z[idx]
    print(uZ)
    

    97. 考虑两个向量AB,写出用einsum等式对应的inner, outer, sum, mul函数 (★★★)

    (提示: np.einsum)

    # Author: Alex Riley
    # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
    
    A = np.random.uniform(0,1,10)
    B = np.random.uniform(0,1,10)
    
    np.einsum('i->', A)       # np.sum(A)
    np.einsum('i,i->i', A, B) # A * B
    np.einsum('i,i', A, B)    # np.inner(A, B)
    np.einsum('i,j->ij', A, B)    # np.outer(A, B)
    

    98. 考虑一个由两个向量描述的路径(X,Y),如何用等距样例(equidistant samples)对其进行采样(sample)**(★★★)?

    (提示: np.cumsum, np.interp)

    # Author: Bas Swinckels
    
    phi = np.arange(0, 10*np.pi, 0.1)
    a = 1
    x = a*phi*np.cos(phi)
    y = a*phi*np.sin(phi)
    
    dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
    r = np.zeros_like(x)
    r[1:] = np.cumsum(dr)                # integrate path
    r_int = np.linspace(0, r.max(), 200) # regular spaced path
    x_int = np.interp(r_int, r, x)       # integrate path
    y_int = np.interp(r_int, r, y)
    

    99. 给定一个整数n 和一个二维数组X,从X中选择可以被解释为从多n度的多项分布式的行,即这些行只包含整数对n的和. (★★★)

    (提示: np.logical_and.reduce, np.mod)

    # Author: Evgeni Burovski
    
    X = np.asarray([[1.0, 0.0, 3.0, 8.0],
                    [2.0, 0.0, 1.0, 1.0],
                    [1.5, 2.5, 1.0, 0.0]])
    n = 4
    M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)
    M &= (X.sum(axis=-1) == n)
    print(X[M])
    

    100. 对于一个一维数组X,计算它boostrapped之后的95%置信区间的平均值. (★★★)

    (提示: np.percentile)

    # Author: Jessica B. Hamrick
    
    X = np.random.randn(100) # random 1D array
    N = 1000 # number of bootstrap samples
    idx = np.random.randint(0, X.size, (N, X.size))
    means = X[idx].mean(axis=1)
    confint = np.percentile(means, [2.5, 97.5])
    print(confint)
    
  • 相关阅读:
    U3D shaderlab 相关指令开关
    CCF NOI1073
    CCF NOI1185
    CCF NOI1077(自然数的拆分问题 )
    CCF NOI1070(汉诺塔)
    CCF NOI1069
    2018年全国多校算法寒假训练营练习比赛(第一场)G.圆圈
    poj1941(递归)
    Codeforce914B (Conan and Agasa play a Card Game)
    Codeforce916B
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/10626450.html
Copyright © 2011-2022 走看看