zoukankan      html  css  js  c++  java
  • placeholder和assign速度对比

    在CPU上,使用variable和placeholder效果差不多
    在GPU上,使用variable要比每次都传placeholder快得多3:2
    使用GPU的瓶颈主要在于GPU和内存之间的复制操作

    """
    place_holder和variable速度对比
    """
    import time
    
    import numpy as np
    import tensorflow as tf
    
    M = 4096
    N = 4096
    K = 4096
    A = np.random.random((N, M))
    B = np.random.random((M, K))
    a = tf.placeholder(dtype=tf.float32, shape=(None, M))
    b = tf.placeholder(dtype=tf.float32, shape=(None, N))
    c = tf.Variable(initial_value=A, dtype=tf.float32)
    pro = a @ b
    use_assign = c @ b
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        beg_time = time.time()
        for i in range(5):
            sess.run(use_assign, feed_dict={
                b: B
            })
        print("use variable", time.time() - beg_time)
        beg_time = time.time()
        for i in range(5):
            sess.run(pro, feed_dict={
                a: A,
                b: B
            })
        print("use placeholder", time.time() - beg_time)
    
  • 相关阅读:
    element-ui 刷新页面不能自动打开对应的菜单
    cookie
    cdn
    为已有文件添加 d.ts 声明
    WiFi 漫游过程
    Wifi 4 way handshake 四次握手
    WiFi association request/response
    WiFi beacon
    WiFi Auth/Deauth帧
    WiFi probe request/response
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/11264639.html
Copyright © 2011-2022 走看看