zoukankan      html  css  js  c++  java
  • 矩阵乘法+快速幂+序列递推公式

    1250: Gobonacci

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 75  解决: 11
    [提交][状态][讨论版]

    题目描述

          Fibonacci sequence is well-known to us ,f(0)=1,f(1)=1, f(n) = f(n-1)+f(n-2), how nice the recursion! In addition, the is exponential growth in series. Obviously, Goagain was not content with the fact that the series didn’t increased as rapidly as he had expected, therefore, he designed such a function

    g(0) = a   g(1)= b    g(2)=c

    g(n)=3*g(n-1)+2*g(n-2)+g(n-3)      (n>=2)

         Besides, the function was named after Goagain series. What made him distracted was that he could hardly calculate the series.

         By the way , goagain without any festival fuck named it Gobonacci sequence

    输入

    Multiple sets of input data, each set including four positive integers a, b, c ,n  ( a, b, c <= 100 , 0<=  n <2^60)

    输出

    Please output the value of g(n), considering the value of g(n) is far too large, output g(n) %100000007  is okay.

    样例输入

    1 1 1 33 2 1 3

    样例输出

    610
    
    
    
    
    #include<iostream>
    using namespace std;
    struct m{long long  int a[3][3]; };
    long long int big = 100000007;
    m aa = { 0, 1, 0, 0, 0, 1, 1, 2, 3 };
    m mul(m a, m b){
    	int i, j, k;
    	m c;
    	for (i = 0; i < 3;i++)
    	for (j = 0; j < 3; j++)
    	{
    		c.a[i][j] = 0;
    		for (k = 0; k < 3; k++)
    			c.a[i][j] +=( (a.a[i][k]%big) * (b.a[k][j]%big))%big;
    		c.a[i][j] %= big;
    	}
    	return c;
    }
    m power(m a, long long int n){
    	if (n == 1)return a;
    	m b = power(a, n / 2);
    	m c = mul(b, b);
    	if (n % 2 == 1)c = mul(a, c);
    	return c;
    }
    int main(){
    	freopen("in.txt", "r", stdin);
    	long long int a, b, c, n;
    	while (cin >> a >> b >> c >> n){
    		if (n == 0){ cout << a << endl; continue; }
    		if (n == 1){ cout << b << endl; continue; }
    		if (n == 2){ cout << c << endl; continue; }
    		m ans = power(aa, n-2);
    		cout << (ans.a[2][0] * a + ans.a[2][1] * b + ans.a[2][2] * c) % big << endl;
    	}
    }


  • 相关阅读:
    ASP.NET中在一般处理程序中使用session的简单介绍
    oracle 11gR2安装图文教程
    ORACEL 创建表空间
    Echarts使用心得总结(二)
    SqlServer 2008无法远程连接到服务器
    浅谈HTTP中Get与Post的区别
    java设计模式-观察者模式学习
    读牛人博客有感
    mysql的with rollup
    java中的枚举enum
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/5013903.html
Copyright © 2011-2022 走看看