zoukankan      html  css  js  c++  java
  • HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底。我干啥都是半吊子,一瓶子不满半瓶子晃荡。
    就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔。

    问题描述

    给定一个字符串s,求最长回文子串。
    回文子串的回文指的是abccba这种从前往后读和从后往前读一样。
    子串必须连续(比如从i到j,s[i:j]),不是最长子序列(最长回文子序列怎么求?),子序列是可以不连续的。

    算法大意

    ans[i]表示以字符i为中心的最长回文子串的长度
    now表示now+ans[now]取得最大值的那个下标
    对于当前字符i,如果i处在以now为中心的回文子串里,那么ans[i]的求法可以参考i关于now的对称点的回文子串长度,也就是ans[now-(i-now)].
    例如:1j34now67i9,假设ans[j]=1,那么ans[i]也等于1,因为i和j都处在以now为中心的回文子串里面,它们是对称的。

    上面所述即为算法关键,其余情形很容易自己想到。
    但是Manacher算法用到了两个技巧

    加#号,统一处理

    ans[i]中记录的是以i为中心的最长回文子串,如果不作处理,这样只能够检测出长度为奇数的回文子串的最大长度。所以有一个巧妙的预处理。
    给定字符串abcc,扩充成#a#b#c#c#。

    a#b#a# 长度为3,以字符为中心的情况

    a#a#a#a# 长度为4,以#为中心的情况

    这样奇数偶数统一化处理。

    首部加上一个怪异字符$,减少条件判断

    如果在for循环中检测两个条件,那是很费事的,效率低。
    如何判断一个条件有很多次无效的判断?就看这个条件发挥作用,影响程序分支的次数和进行条件求值的次数。
    边界条件判断影响分支的次数很少,但却每次都要进行判断。
    通过加上一个终止字符,就能够避免边界条件判断。
    在Manacher算法中,要求回文子串同时要防止下标越界。所以直接在开头插入一个$字符,这样肯定因为失配而终止。

    复杂度分析

    Manacher算法为线性复杂度,因为从前往后有一个指针一直是单方向运动,没有回溯。
    对于数组中的多个指针,如果都是单向运动,尽管它们运动的顺序和步长不同,那也一定是线性复杂度。

    代码

    #include<stdio.h>
    #include<iostream> 
    using namespace std;
    const int N = 110009;
    char s[N];
    char a[N * 2];
    int ans[N * 2];
    int now;
    int main(){
    	freopen("in.txt", "r", stdin);
    	while (scanf("%s", s) != -1){
    		if (s[0] == 0)continue;
    		//#号法预处理
    		int j = 0;
    		a[j++] = '$';//这样就能少判断一点,不用考虑边界问题了
    		for (int i = 0; s[i]; i++){
    			a[j++] = '#';
    			a[j++] = s[i];
    		}
    		a[j++] = '#';
    		//开始算法主体部分
    		now = 1;
    		ans[0] = ans[1] = 0;
    		for (int i = 2; i < j; i++){
    			if (now + ans[now] < i){//如果当前字符不在阴影里,只能自力更生
    				int k = i;
    				while (a[k] == a[i - (k - i)]) k++;
    				ans[i] = k - i - 1;
    				now = i;
    			}
    			else{
    				int right = now - (i - now);
    				if (right - ans[right]>now - ans[now]){
    					ans[i] = ans[right];
    				}
    				else{
    					int k = now + ans[now];
    					while (a[k] == a[i - (k - i)])k++;
    					ans[i] = k - i - 1;
    					now = i;
    				}
    			}
    		}
    		//寻找答案,这部分可以直接放在求ans的过程中
    		int ma = 0;
    		for (int i = 1; i < j; i++){
    			if (ma < ans[i])ma = ans[i];
    		}
    		printf("%d
    ", ma);
    	}
    	return 0;
    }
    

    最长回文子序列

    动态规划:复杂度都是O(n^2)
    方法一:
    a[i,j]表示s[i,j]之间最长回文子序列。则a[i,j]可以来自a[i+1,j-1],a[i-1,j],a[i,j-1].
    方法二:
    将s和s反过来得到的字符串求最长公共子序列

  • 相关阅读:
    crossvcl使用
    CSS垂直居中的方法
    IIS7 启用GZip压缩
    javascript arguments解释,实现可变长参数。
    DataTable转List<dynamic>
    Bootstrap表单
    Func<T>、Action<T> 的区别于说明
    jQuery.fn.extend() 与 jQuery.extend()
    javascript this关键字指向详解
    javascript call与apply关键字的作用
  • 原文地址:https://www.cnblogs.com/weiyinfu/p/6246487.html
Copyright © 2011-2022 走看看