1、各种排序
#include<iostream> using namespace std; //-------直接插入排序 void InsertSort(ElemType A[],int n) { ElemType x; int i,j; for(i=1;i<n;i++) { x=A[i]; for(j=i-1;j>=0;j--) if(x.stn<A[j].stn) A[j+1]=A[j]; else break; A[j+1]=x; } } //---------------------- //-------希尔排序----- void ShellSort(ElemType A[],int n) { ElemType x; int i,j,d; for(d=n/2;d>=1;d/=2) { for(i=d;i<n;i++) { x=A[i]; for(j=i-d;j>=0;j-=d) { if(x.stn<A[j].stn) A[j+d]=A[j]; else break; } A[j+d]=x; } } } ///-----直接选择排序-- void SelectSort(ElemType A[],int n) { ElemType x; int i,j,k; for(i=1;i<=n-1;i++) { k=i-1; for(j=i;j<=n-1;j++) { if(A[j].stn<A[k].stn) k=j; } if(k!=i-1) { x=A[i-1];A[i-1]=A[k];A[k]=x; } } } //---------冒泡排序---------- void BubbleSort(ElemType A[],int n) { ElemType x; int i,j,flag; for(i=1;i<=n-1;i++) { flag=0; for(j=n-1;j>=i;j--) if(A[j].stn<A[j-1].stn) { x=A[j-1];A[j-1]=A[j];A[j]=x; flag=1; } if(flag==0) return; } } int main() { return 0; }
2、邻接矩阵,外加克鲁斯卡尔,弗洛伊德,普里姆等算法,进行图的遍历,和最小生成树的处理
#include<iostream.h> #include<stdlib.h> #include<strstrea.h> typedef int VertexType; typedef int WeightType; const int MaxEdgeNum=10; const int MaxVertexNum=10; const WeightType MaxValue=1000; typedef VertexType vexlist[MaxVertexNum]; typedef int adjmatrix[MaxVertexNum][MaxVertexNum]; struct edgenode { int adjvex; WeightType weight; edgenode*next; }; typedef edgenode*adjlist[MaxVertexNum]; struct edge { int fromvex; int endvex; WeightType weight; }; typedef edge edgeset[MaxEdgeNum]; //#include"4_01栈的顺序存储.cpp" void PATH(edgenode*path[],int m,int j) { edgenode *p,*q,*s; p=path[j]; while(p!=NULL) { path[j]=p->next; delete p; p=path[j]; } p=path[m]; while(p!=NULL) { q=new edgenode; q->adjvex=p->adjvex; if(path[j]==NULL) path[j]=q; else s->next=q; s=q; p=p->next; } q=new edgenode; q->adjvex=j; q->next=NULL; s->next=q; } void Dijkstra(adjmatrix GA, int dist[],edgenode* path[], int i, int n) { int j,k,w,m; bool* s=new bool[n]; //分别给s,dist和path数组赋初值 for(j=0; j<n; j++) { if(j==i) s[j]=true; else s[j]=false; dist[j]=GA[i][j]; if(dist[j]<MaxValue && j!=i) { edgenode* p1=new edgenode; edgenode* p2=new edgenode; p1->adjvex=i; p2->adjvex=j; p2->next=NULL; p1->next=p2; path[j]=p1; } else path[j]=NULL; } for(k=1; k<=n-2; k++) { //求出第k个终点m w=MaxValue; m=i; for(j=0; j<n; j++) if(s[j]==false && dist[j]<w) { w=dist[j]; m=j; } if(m!=i) s[m]=true; else break; for(j=0; j<n; j++) if(s[j]==false && dist[m]+GA[m][j]<dist[j]) { dist[j]=dist[m]+GA[m][j]; PATH(path, m, j); } } } void Floyed(adjmatrix GA,adjmatrix A,int n) { int i,j,k; for(i=0;i<n;i++) for(j=0;j<n;j++) A[i][j]=GA[i][j]; for(k=0;k<n;k++) for(i=0;i<n;i++) for(j=0;j<n;j++){ if(i==k || j==k || i==j) continue; if( A[i][k]+A[k][j]<A[i][j]) A[i][j]=A[i][k]+A[k][j]; } } void Prim(adjmatrix GA,edgeset CT,int n) { int i,j,k,min,t,m,w; for(i=0;i<n-1;i++) { CT[i].fromvex=0; CT[i].endvex=i+1; CT[i].weight=GA[0][i+1]; } for(k=1;k<n;k++) { min=MaxValue; m=k-1; for(j=k-1;j<n-1;j++) if(CT[j].weight<min) { min=CT[j].weight; m=j; } edge temp=CT[k-1]; CT[k-1]=CT[m]; CT[m]=temp; j=CT[k-1].endvex; for(i=k;i<n-1;i++) { t=CT[i].endvex; w=GA[j][t]; if(w<CT[i].weight) { CT[i].weight=w; CT[i].fromvex=j; } } } } void Kruskal(edgeset GE,edgeset CT,int n) { int i,j; bool**s=new bool*[n]; for(i=0;i<n;i++) s[i]=new bool[n]; for(i=0;i<n;i++) { for(j=0;j<n;j++) if(i==j) s[i][j]=true; else s[i][j]=false; } int k=1; int d=0; int m1,m2; while(k<n) { for(i=0;i<n;i++) { if(s[i][GE[d].fromvex]==true) m1=i; if(s[i][GE[d].endvex]==true) m2=i; } if(m1!=m2) { CT[k-1]=GE[d]; k++; for(j=0;j<n;j++) { s[m1][j]=s[m1][j]||s[m2][j]; s[m2][j]=false; } } d++; } for(i=0;i<n;i++) delete[]s[i]; delete[]s; } //边集数组 void InitArray(edgeset GE) { for(int i=0;i<MaxEdgeNum;i++) { GE[i].fromvex=GE[i].endvex=-1; GE[i].weight=MaxValue; } } void CreateArray(edgeset GE,int n,char*s,int k) { istrstream sin(s); char c1,c2,c3; int i,j,c=0; WeightType w; sin>>c1; if(k==0){ do{ sin>>c1>>i>>c2>>j>>c3; GE[c].fromvex=i; GE[c].endvex=j; GE[c].weight=1; c++; sin>>c1; }while(c1==','); } else{ do{ sin>>c1>>i>>c2>>j>>c3>>w; GE[c].fromvex=i; GE[c].endvex=j; GE[c].weight=w; c++; sin>>c1; }while(c1==','); } } void Arry(edgeset GE,int i,int n,bool*visited) { int j=i,k=0; while(k!=n) { for(int t=0;GE[t].fromvex!=-1;t++) { if(GE[t].fromvex==j&&!visited[j]) { cout<<j<<" "; visited[j]=true; j=GE[t].endvex; k++; break; } } if(GE[t].fromvex==-1) { cout<<j<<" "; k++; } } } void Arry2(edgeset GE,int i,int n,bool*visited) { int j=i,k=1; int q[10]; int front=0,rear=0; cout<<j<<" "; while(k!=n) { for(int t=0;GE[t].fromvex!=-1;t++) { if(GE[t].fromvex=j&&!visited[j]) { cout<<GE[t].endvex<<" "; k++; q[rear]=GE[t].endvex; rear=(rear+1)%10; } else { visited[j]=true; j=q[front]; front=(front+1)%10; break; } } } } void InitAdjoin(adjlist GL) { for(int i=0;i<MaxVertexNum;i++) GL[i]=NULL; } void CreateAdjoin(adjlist GL,int n,char*s,int k1,int k2) { istrstream sin(s); char c1,c2,c3; int i,j; WeightType w; edgenode*p; sin>>c1; if(k2==0){ do{ sin>>c1>>i>>c2>>j>>c3; p=new edgenode; p->adjvex=j;p->weight=1; p->next=GL[i]; GL[i]=p; if(k1==0){ p=new edgenode; p->adjvex=i;p->weight=1; p->next=GL[j]; GL[j]=p; } sin>>c1; }while(c1==','); } else{ do{ sin>>c1>>i>>c2>>j>>c3>>w; p=new edgenode; p->adjvex=j;p->weight=w; p->next=GL[i]; GL[i]=p; if(k1==0) { p=new edgenode; p->adjvex=i;p->weight=w; p->next=GL[j]; GL[j]=p; } sin>>c1; }while(c1==','); } } void InitMatrix(adjmatrix GA,int k) { int i,j; for(i=0;i<MaxVertexNum;i++) for(j=0;j<MaxVertexNum;j++) if(i==j) GA[i][j]=0; else if(k) GA[i][j]=MaxValue; else GA[i][j]=0; } void CreateMatrix(adjmatrix GA,int n,char*s,int k1,int k2) { istrstream sin(s); char c1,c2,c3; int i,j; WeightType w; sin>>c1; if(k1==0&&k2==0) do{ sin>>c1>>i>>c2>>j>>c3; GA[i][j]=GA[j][i]=1; sin>>c1; if(c1==')')break; }while(1); else if(k1==0&&k2!=0) do{ sin>>c1>>i>>c2>>j>>c3>>w; GA[i][j]=GA[j][i]=w; sin>>c1; if(c1==')')break; }while(1); else if(k1!=0 && k2==0) do{ sin>>c1>>i>>c2>>j>>c3; GA[i][j]=1; sin>>c1; if(c1==')')break; }while(1); else if(k1!=0 && k2!=0) do{ sin>>c1>>i>>c2>>j>>c3>>w; GA[i][j]=w; sin>>c1; if(c1==')')break; }while(1); } void dfsMatrix(adjmatrix GA,int i,int n,bool*visited) { Stack M; InitStack(M); int j=i; visited[i]=true; cout<<j<<" "; Push(M,j); while(j!=n||M.top!=0) { if(j==n+1) { j=M.stack[M.top]; M.top--; } if(GA[M.stack[M.top]][j]!=0&&!visited[j]) { visited[j]=true; Push(M,j); cout<<j<<" "; j=0; } else j++; } } /*void dfsAdjoin(adjlist GL,int i,int n,bool*visited) { cout<<i<<" "; visited[i]=true; edgenode*p=GL[i]; while(p!=NULL) { int j=p->adjvex; if(!visited[j]) dfsAdjoin(GL,j,n,visited); p=p->next; } }*/ void dfsAdjoin(adjlist GL,int i,int n,bool*visited) { Stack M; InitStack(M); cout<<i<<" "; Push(M,i); visited[i]=true; edgenode*p=GL[i]; while(p!=NULL||M.top!=0) { if(p==NULL) { M.top--; p=GL[M.stack[M.top]]; } int j=p->adjvex; if(!visited[j]) { visited[j]=true; cout<<j<<" "; Push(M,j); p=GL[M.stack[M.top]]; } else { p=p->next; } } } int main() { int i,n,k1,k2; cout<<"输入待处理图的顶点数:"; cin>>n; cout<<"输入图的有向和有无权选择(0为无,非0为有):"; cin>>k1>>k2; bool*visited=new bool[n]; adjmatrix ga; InitMatrix(ga,k2); cout<<"输入图的边集;"; char*a=new char[100]; cin>>a; CreateMatrix(ga,n,a,k1,k2); cout<<"按图的邻接矩阵得到的深度优先遍历序列:"<<endl; for(i=0;i<n;i++) visited[i]=false; dfsMatrix(ga,0,n,visited); cout<<endl; cout<<"按图的邻接表得到的深度优先遍历序列:"<<endl; adjlist ka; InitAdjoin(ka); CreateAdjoin(ka,n,a,k1,k2); for(i=0;i<n;i++) visited[i]=false; dfsAdjoin(ka,0,n,visited); cout<<endl; for(i=0;i<n;i++) visited[i]=false; edgeset ke; InitArray(ke); CreateArray(ke,n,a,0); //Arry(ke,0,n,visited); //cout<<endl; //for(i=0;i<n;i++) visited[i]=false; //Arry2(ke,0,n,visited); return 0; }
3、栈的顺序存储
//typedef int ElemType; /*struct Stack { ElemType *stack; int top; int MaxSize; };*/ //1. 初始化栈S为空 void InitStack(Stack& S) { //初始设置栈空间大小为10 S.MaxSize=100; //动态存储空间分配 S.stack=new ElemType[S.MaxSize]; if(!S.stack){ cout<<"动态存储分配失败!"<<endl; exit(1); } //初始置栈为空 S.top=-1; } //2. 元素item进栈,即插入到栈顶 void Push(Stack& S, ElemType item) { //若栈空间用完则自动扩大2倍空间,原有栈内容不变 if(S.top==S.MaxSize-1) { int k=sizeof(ElemType); //计算每个元素存储空间的长度 S.stack=(ElemType*)realloc(S.stack, 2*S.MaxSize*k); S.MaxSize=2*S.MaxSize; //把栈空间大小修改为新的长度 } //栈顶指针后移一个位置 S.top++; //将新元素插入到栈顶 S.stack[S.top]=item; } //3. 删除栈顶元素并返回 ElemType Pop(Stack& S) { //若栈空则退出运行 if(S.top==-1) { cout<<"栈空,退出运行!"<<endl; exit(1); } //栈顶指针减1表示退栈 S.top--; //返回原栈顶元素的值 return S.stack[S.top+1]; } //4. 读取栈顶元素的值 ElemType Peek(Stack& S) { //若栈空则退出运行 if(S.top==-1) { cout<<"Stack is empty!"<<endl; exit(1); } //返回栈顶元素的值 return S.stack[S.top]; } //5. 判断栈是否为空 bool EmptyStack(Stack& S) { return S.top==-1; } //6. 清除栈中的所有元素并释放动态存储空间 void ClearStack(Stack& S) { if(S.stack) { delete []S.stack; S.stack=0; } S.top=-1; S.MaxSize=0; }
4、边集数组深度优先搜索
void Arry(edgeset GE,int i,int n,bool*visited) { int j=i,k=0; while(k!=n) { for(int t=0;GE[t].fromvex!=-1;t++) { if(GE[t].fromvex==j&&!visited[j]) { cout<<j<<" "; visited[j]=true; j=GE[t].endvex; k++; break; } } if(GE[t].fromvex==-1) { cout<<j<<" "; k++; } } }
5、非递归邻接表
void dfsAdjoin(adjlist GL,int i,int n,bool*visited) { Stack M; InitStack(M); cout<<i<<" "; Push(M,i); visited[i]=true; edgenode*p=GL[i]; while(p!=NULL||M.top!=0) { if(p==NULL) { M.top--; p=GL[M.stack[M.top]]; } int j=p->adjvex; if(!visited[j]) { visited[j]=true; cout<<j<<" "; Push(M,j); p=GL[M.stack[M.top]]; } else { p=p->next; } } }
6、非递归链接矩阵
void dfsMatrix(adjmatrix GA,int i,int n,bool*visited) { Stack M; InitStack(M); int j=i; visited[i]=true; cout<<j<<" "; Push(M,j); while(j!=n||M.top!=0) { if(j==n+1) { j=M.stack[M.top]; M.top--; } if(GA[M.stack[M.top]][j]!=0&&!visited[j]) { visited[j]=true; Push(M,j); cout<<j<<" "; j=0; } else j++; } }
7、哈夫曼编码
#include<iostream> using namespace std; #include<stdlib.h> #include<fstream> #include<string> typedef int ElemType; struct save { char a2[10]; int lenth; }; save minma[26]; struct BTreeNode { ElemType data; BTreeNode*left; BTreeNode*right; }; int count=0; BTreeNode*CreateHuffman(ElemType a[],int n) { BTreeNode**b,*q; b=new BTreeNode*[n]; int i,j; for(i=0;i<n;i++) { b[i]=new BTreeNode; b[i]->data=a[i];b[i]->left=b[i]->right=NULL; } for(i=1;i<n;i++) { int k1=-1,k2; for(j=0;j<n;j++) { if(b[j]!=NULL&&k1==-1) {k1=j;continue;} if(b[j]!=NULL) {k2=j;break;} } for(j=k2;j<n;j++) { if(b[j]!=NULL) { if(b[j]->data<b[k1]->data) {k2=k1;k1=j;} else if(b[j]->data<b[k2]->data) k2=j; } } q=new BTreeNode; q->data=b[k1]->data+b[k2]->data; q->left=b[k1];q->right=b[k2]; b[k1]=q;b[k2]=NULL; } delete []b; return q; } void HuffManCoding(BTreeNode*FBT,int len) { static char a[10]; if(FBT!=NULL) { if(FBT->left==NULL&&FBT->right==NULL) { for(int i=0;i<len;i++) { minma[count].a2[i]=a[i]; } minma[count].lenth=len; count++; } else{ a[len]=0;HuffManCoding(FBT->left,len+1); a[len]=1;HuffManCoding(FBT->right,len+1); } } } int main() { BTreeNode *m; char a1[26]; for(int i=0;i<26;i++) { a1[i]=65+i; } int a3[26]; ifstream f1("新建文本文档.txt",ios::out); int j; i=0; while(!f1.eof()) if(f1>>j) a3[i++]=j; m=CreateHuffman(a3,26); HuffManCoding(m,0); int total=0; cout<<"请输入一串字符"<<endl; char s1[100]; cin>>s1; cout<<"它们所对应的密文分别是"<<endl; char *q=s1; while(q[total]!='