zoukankan      html  css  js  c++  java
  • 85、使用TFLearn实现iris数据集的分类

    '''
    Created on 2017年5月21日
    
    @author: weizhen
    '''
    #Tensorflow的另外一个高层封装TFLearn(集成在tf.contrib.learn里)对训练Tensorflow模型进行了一些封装
    #使其更便于使用。
    #使用TFLearn实现分类问题
    #为了方便数据处理,本程序使用了sklearn工具包,
    #更多信息可以参考http://scikit-learn.org
    from sklearn import model_selection
    from sklearn import datasets
    from sklearn import metrics
    import tensorflow as tf
    import numpy as np
    from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat
    #导入TFLearn
    learn = tf.contrib.learn
    
    #自定义模型,对于给定的输入数据(features)以及其对应的正确答案(target)
    #返回在这些输入上的预测值、损失值以及训练步骤
    def my_model(features,target):
        #将预测的目标转换为one-hot编码的形式,因为共有三个类别,所以向量长度为3.经过转化后,第一个类别表示为(1,0,0)
        #第二个为(0,1,0),第三个为(0,0,1)
        target = tf.one_hot(target,3,1,0)
        
        #定义模型以及其在给定数据上的损失函数
        logits = tf.contrib.layers.fully_connected(features,3,tf.nn.softmax)
        loss = tf.losses.softmax_cross_entropy(target, logits)
        
        #创建模型的优化器,并得到优化步骤
        train_op=tf.contrib.layers.optimize_loss(loss,          #损失函数
                                                 tf.contrib.framework.get_global_step(), #获取训练步数并在训练时更新
                                                 optimizer='Adam',   #定义优化器
                                                 learning_rate=0.01)     #定义学习率
        #返回在给定数据上的预测结果、损失值以及优化步骤
        return tf.arg_max(logits, 1),loss,train_op
    
    #加载iris数据集,并划分为训练集合和测试集合
    iris = datasets.load_iris()
    x_train,x_test,y_train,y_test=model_selection.train_test_split(iris.data,
                                                                    iris.target,
                                                                    test_size=0.2,
                                                                    random_state=0)
    #将数据转化为float32格式
    x_train,x_test = map(np.float32,[x_train,x_test])
    #封装和训练模型,输出准确率
    classifier=SKCompat(learn.Estimator(model_fn=my_model,model_dir="Models/model_1"))
    #使用封装好的模型和训练数据执行100轮迭代
    classifier.fit(x_train,y_train,steps=800)
    
    #使用训练好的模型进行结果预测
    y_predicted=[i for i in classifier.predict(x_test)]
    #计算模型的准确度
    score=metrics.accuracy_score(y_test,y_predicted)
    print("Accuracy: %.2f"%(score*100))

    结果如下所示

    2017-05-21 15:49:11.386435: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.386846: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.387271: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.387604: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.388450: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.388882: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.389180: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    2017-05-21 15:49:11.389766: W c:	f_jenkinshomeworkspace
    elease-windevicecpuoswindows	ensorflowcoreplatformcpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
    Accuracy: 100.00
  • 相关阅读:
    WPF 重新启动该程序
    Winform水印
    PS 切HTML (ps+div+css)
    VS服务器运行有问题 怎么办?
    ISDeleted 软删除!!
    项目初始框架
    MD5加密
    !!LoginWindow.cs
    !!!精简版三层架构
    !!C#交互操作SqlServer数据库 基本的增删改查
  • 原文地址:https://www.cnblogs.com/weizhen/p/6885087.html
Copyright © 2011-2022 走看看