zoukankan      html  css  js  c++  java
  • 91、R语言编程基础

    1、查看当前工作空间

    > getwd()
    [1] "C:/Users/P0079482.HHDOMAIN/Documents"
    > 

    2、查看内存中有哪些对象

    > ls()
     [1] "a"         "a1"        "b"         "bank"      "bank_full" "dat"      
     [7] "m1"        "tab"       "w"         "x"         "x1"        "x2"       
    > 

    3、把指定对象从内存中删除

    > rm('a')
    > ls()
     [1] "a1"        "b"         "bank"      "bank_full" "dat"       "m1"       
     [7] "tab"       "w"         "x"         "x1"        "x2"       
    > 

    4、查看函数帮助

    > help(matrix)
    > 

    5、创建向量和矩阵

    > x1=c(2,4,6,8,0)
    > x2=c(1,3,5,7,9)
    查看向量的长度
    > length(x1) [1] 5
    查看向量的类型
    > mode(x1) [1] "numeric" >

    6、按行将向量排列成矩阵

    > rbind(x1,x2)
    [,1] [,2] [,3] [,4] [,5]
    x1 2 4 6 8 0
    x2 1 3 5 7 9

     7、按列将向量排成矩阵

    > cbind(x1,x2)
         x1 x2
    [1,]  2  1
    [2,]  4  3
    [3,]  6  5
    [4,]  8  7
    [5,]  0  9

    8、求向量的均值

    > x=c(1:100)
    > mean(x)
    [1] 50.5
    > 

    9、求向量的和

    > sum(x)
    [1] 5050
    > 

    10、

    > max(x)  求最大值
    [1] 100
    > min(x)  最小值
    [1] 1
    > var(x)  方差
    [1] 841.6667
    > prod(x)    连乘
    [1] 9.332622e+157
    > sd(x)      标准差
    [1] 29.01149

    11、生成矩阵

    > a1=c(1:12)
    > matrix(a1,nrow=3,ncol=4)
         [,1] [,2] [,3] [,4]
    [1,]    1    4    7   10
    [2,]    2    5    8   11
    [3,]    3    6    9   12
    > 
    > matrix(a1,nrow=4,ncol=3)
         [,1] [,2] [,3]
    [1,]    1    5    9
    [2,]    2    6   10
    [3,]    3    7   11
    [4,]    4    8   12
    > matrix(a1,nrow=4,ncol=3,byrow=T)
         [,1] [,2] [,3]
    [1,]    1    2    3
    [2,]    4    5    6
    [3,]    7    8    9
    [4,]   10    1    2
    
    根据行生成矩阵

    12、矩阵的转置

    > a=matrix(1:12,nrow=3,ncol=4)
    > a
         [,1] [,2] [,3] [,4]
    [1,]    1    4    7   10
    [2,]    2    5    8   11
    [3,]    3    6    9   12
    > t(a)
         [,1] [,2] [,3]
    [1,]    1    2    3
    [2,]    4    5    6
    [3,]    7    8    9
    [4,]   10   11   12
    > 

    13、矩阵的加减

    > a=b=matrix(1:12,nrow=3,ncol=4)
    > a+b
         [,1] [,2] [,3] [,4]
    [1,]    2    8   14   20
    [2,]    4   10   16   22
    [3,]    6   12   18   24
    > a-b
         [,1] [,2] [,3] [,4]
    [1,]    0    0    0    0
    [2,]    0    0    0    0
    [3,]    0    0    0    0
    > 

    14、矩阵乘法

    > a=matrix(1:12,nrow=3,ncol=4)
    > b=matrix(1:12,nrow=4,ncol=3)
    > a%*%b
         [,1] [,2] [,3]
    [1,]   70  158  246
    [2,]   80  184  288
    [3,]   90  210  330
    > 

    15、矩阵求对角元素

    > a=matrix(1:16,nrow=4,ncol=4)
    > a
         [,1] [,2] [,3] [,4]
    [1,]    1    5    9   13
    [2,]    2    6   10   14
    [3,]    3    7   11   15
    [4,]    4    8   12   16
    > diag(a)
    [1]  1  6 11 16
    > diag(diag(a))
         [,1] [,2] [,3] [,4]
    [1,]    1    0    0    0
    [2,]    0    6    0    0
    [3,]    0    0   11    0
    [4,]    0    0    0   16
    > diag(4)
         [,1] [,2] [,3] [,4]
    [1,]    1    0    0    0
    [2,]    0    1    0    0
    [3,]    0    0    1    0
    [4,]    0    0    0    1
    > 

    16、生成随机矩阵

    > a=matrix(rnorm(16),4,4)
    > a
               [,1]         [,2]        [,3]       [,4]
    [1,]  0.2353978 -1.168817665 -0.03914636 -0.4350940
    [2,]  0.5550182 -0.001076645 -1.92283070  1.1007430
    [3,]  0.2582714 -0.846160178  0.94940298 -0.6125362
    [4,] -2.1307575 -2.478207744 -0.44198013 -0.2581712
    > 

    17、矩阵求逆

    > solve(a)
               [,1]       [,2]       [,3]       [,4]
    [1,]  0.2524842  0.3182516  0.5172485 -0.2958290
    [2,]  0.4128992 -0.5045100 -1.1071800 -0.2200014
    [3,] -1.7116774  0.4246262  1.9141867  0.1535275
    [4,] -3.1169442  1.4892720  3.0819024  0.4171374
    > 

    18、基本的数据结构,数据框

    > x1=c(10,13,45,26,23,12,24,78,23,43,31,56)
    > x2=c(20,65,32,32,27,87,60,13,42,51,77,35)
    > x=data.frame(x1,x2)
    > x
       x1 x2
    1  10 20
    2  13 65
    3  45 32
    4  26 32
    5  23 27
    6  12 87
    7  24 60
    8  78 13
    9  23 42
    10 43 51
    11 31 77
    12 56 35
    > 
    > (x=data.frame('weight'=x1,'cost'=x2))
       weight cost
    1      10   20
    2      13   65
    3      45   32
    4      26   32
    5      23   27
    6      12   87
    7      24   60
    8      78   13
    9      23   42
    10     43   51
    11     31   77
    12     56   35
    > 

    19、读取文本文件、

    > (x=data.frame('weight'=x1,'cost'=x2))
       weight cost
    1      10   20
    2      13   65
    3      45   32
    4      26   32
    5      23   27
    6      12   87
    7      24   60
    8      78   13
    9      23   42
    10     43   51
    11     31   77
    12     56   35
    > (x=read.table("abc.txt"))
        V1 V2
    1  175 67
    2  183 75
    3  165 56
    4  145 45
    5  178 67
    6  187 90
    7  156 43
    8  176 58
    9  173 60
    10 170 56

    20、读取excell文件

    > w<-read.table("test.prn",header = T)
    > w
      X.. X...1
    1   A     2
    2   B     3
    3   C     5
    4   D     5
    > 

    21、用readxl包读excell

    > library(readxl)
    > dat<-read_excel("test.xlsx")
    > dat
    # A tibble: 4 x 2
      `商品` `价格`
       <chr>  <dbl>
    1      A      2
    2      B      3
    3      C      5
    4      D      5
    > 
  • 相关阅读:
    Spring配置文件中的那些标签意味着什么(持续更新)
    转 spring配置文件
    Web.xml配置详解之context-param
    web.xml 中的listener、 filter、servlet 加载顺序及其详解
    spring mvc 中web.xml配置信息解释
    转 一个web项目web.xml的配置中<context-param>配置作用
    在web.xml中通过contextConfigLocation配置spring
    (转)web.xml中的contextConfigLocation在spring中的作用
    Android菜鸟的成长笔记(20)——IntentService
    PhotoSwipe源码解读系列(二)
  • 原文地址:https://www.cnblogs.com/weizhen/p/6932564.html
Copyright © 2011-2022 走看看