zoukankan      html  css  js  c++  java
  • 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving

    1、使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找

    然后启动docker

    2、使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature,

    Signature主要用来标识模型的输入值的名称和类型

            builder = saved_model_builder.SavedModelBuilder(export_path)
            
            
            classification_inputs = utils.build_tensor_info(cnn.input_x)
            classification_dropout_keep_prob = utils.build_tensor_info(cnn.dropout_keep_prob)
            classification_outputs_classes = utils.build_tensor_info(prediction_classes)
            classification_outputs_scores = utils.build_tensor_info(cnn.scores)
    
       
            classification_signature = signature_def_utils.build_signature_def(
            inputs={signature_constants.CLASSIFY_INPUTS: classification_inputs,
                         signature_constants.CLASSIFY_INPUTS:classification_dropout_keep_prob
                         },
            outputs={
                  signature_constants.CLASSIFY_OUTPUT_CLASSES:
                  classification_outputs_classes,
                  signature_constants.CLASSIFY_OUTPUT_SCORES:
                  classification_outputs_scores
             },
             method_name=signature_constants.CLASSIFY_METHOD_NAME)
    
            tensor_info_x = utils.build_tensor_info(cnn.input_x)
            tensor_info_y = utils.build_tensor_info(cnn.predictions)
            tensor_info_dropout_keep_prob = utils.build_tensor_info(cnn.dropout_keep_prob)
    
            prediction_signature = signature_def_utils.build_signature_def(
                   inputs={'inputX': tensor_info_x,
                                'input_dropout_keep_prob':tensor_info_dropout_keep_prob},
                   outputs={'predictClass': tensor_info_y},
            method_name=signature_constants.PREDICT_METHOD_NAME)
    
            legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
      
            #add the sigs to the servable
            builder.add_meta_graph_and_variables(
                    sess, [tag_constants.SERVING],
                    signature_def_map={
                        'textclassified':
                        prediction_signature,
                        signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                        classification_signature,
             },
             legacy_init_op=legacy_init_op)
             #save it!
            builder.save(True)

    保存之后的计算图的结构可以从下面这里看见,下面这里只给出模型的signature部分,因为signature里面定义了你到时候call restful接口的参数名称和类型

      signature_def {
        key: "serving_default"
        value {
          inputs {
            key: "inputs"
            value {
              name: "dropout_keep_prob:0"
              dtype: DT_FLOAT
              tensor_shape {
                unknown_rank: true
              }
            }
          }
          outputs {
            key: "classes"
            value {
              name: "index_to_string_Lookup:0"
              dtype: DT_STRING
              tensor_shape {
                dim {
                  size: 1
                }
              }
            }
          }
          outputs {
            key: "scores"
            value {
              name: "output/scores:0"
              dtype: DT_FLOAT
              tensor_shape {
                dim {
                  size: -1
                }
                dim {
                  size: 2
                }
              }
            }
          }
          method_name: "tensorflow/serving/classify"
        }
      }
      signature_def {
        key: "textclassified"
        value {
          inputs {
            key: "inputX"
            value {
              name: "input_x:0"
              dtype: DT_INT32
              tensor_shape {
                dim {
                  size: -1
                }
                dim {
                  size: 40
                }
              }
            }
          }
          inputs {
            key: "input_dropout_keep_prob"
            value {
              name: "dropout_keep_prob:0"
              dtype: DT_FLOAT
              tensor_shape {
                unknown_rank: true
              }
            }
          }
          outputs {
            key: "predictClass"
            value {
              name: "output/predictions:0"
              dtype: DT_INT64
              tensor_shape {
                dim {
                  size: -1
                }
              }
            }
          }
          method_name: "tensorflow/serving/predict"
        }
      }
    }

    从上面的Signature定义可以看出 到时候call restfull 接口需要传两个参数,

    int32类型的名称为inputX参数

    float类型名称为input_drop_out_keep_prob的参数

    上面的protocol buffer 中

    textclassified表示使用TextCnn卷积神经网络来进行预测,然后预测功能的名称叫做textclassified

     3、将模型部署到Tensorflow Serving 上面

    首先把模型通过工具传输到docker上面

    模型的结构如下

     传到docker上面,然后在外边套一个文件夹名字起位模型的名字,叫做

    text_classified_model
    然后执行下面这条命令运行tensorflow/serving
    docker run -p 8500:8500 --mount type=bind,source=/home/docker/model/text_classified_model,target=/mo
    dels/text_classified_model -e MODEL_NAME=text_classified_model -t tensorflow/serving
    source表示模型在docker上面的路径
    target表示模型在docker中TensorFlow/serving container上面的路径

     然后输入如下所示

    上面显示运行了两个接口一个是REST API 接口,端口是8501

    另一个是gRPC接口端口是8500

    gRPC是HTTP/2协议,REST API 是HTTP/1协议

    区别是gRPC只有POST/GET两种请求方式

    REST API还有其余很多种 列如 PUT/DELETE 等

    4、客户端调用gPRC接口

    需要传两个参数,

    一个是

    inputX

    另一个是

    input_dropout_keep_prob
    '''
    Created on 2018年10月17日
    
    @author: 95890
    '''
    
    """Send text to tensorflow serving and gets result
    """
    
    
    # This is a placeholder for a Google-internal import.
    
    from grpc.beta import implementations
    import tensorflow as tf
    import data_helpers
    from tensorflow_serving.apis import predict_pb2
    from tensorflow_serving.apis import prediction_service_pb2
    from tensorflow.contrib import learn
    import numpy as np
    
    
    tf.flags.DEFINE_string("positive_data_file", "./data/rt-polaritydata/rt-polarity.pos", "Data source for the positive data.")
    tf.flags.DEFINE_string("negative_data_file", "./data/rt-polaritydata/rt-polarity.neg", "Data source for the negative data.")
    tf.flags.DEFINE_string('server', '192.168.99.100:8500',
                               'PredictionService host:port')
    FLAGS = tf.flags.FLAGS
    
    x_text=[]
    y=[]
    max_document_length=40
    
    
    def main(_):
    
    
      testStr =["wisegirls is its low-key quality and genuine"]
    
      
      if x_text.__len__()==0:
          x_text, y = data_helpers.load_data_and_labels(FLAGS.positive_data_file, FLAGS.negative_data_file)
          max_document_length = max([len(x.split(" ")) for x in x_text])
    
      vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
      vocab_processor.fit(x_text)
      x = np.array(list(vocab_processor.fit_transform(testStr)))
      
      host, port = FLAGS.server.split(':')
      channel = implementations.insecure_channel(host, int(port))
      stub = prediction_service_pb2.beta_create_PredictionService_stub(channel)
      request = predict_pb2.PredictRequest()
      request.model_spec.name = "text_classified_model"
      request.model_spec.signature_name = 'textclassified'
      dropout_keep_prob = np.float(1.0)
      
      request.inputs['inputX'].CopyFrom(
      tf.contrib.util.make_tensor_proto(x, shape=[1,40],dtype=np.int32))
      
      request.inputs['input_dropout_keep_prob'].CopyFrom(
      tf.contrib.util.make_tensor_proto(dropout_keep_prob, shape=[1],dtype=np.float))
      
      result = stub.Predict(request, 10.0)  # 10 secs timeout
      print(result)
    
    
    if __name__ == '__main__':
      tf.app.run()

    调用的结果如下所示

    outputs {
      key: "predictClass"
      value {
        dtype: DT_INT64
        tensor_shape {
          dim {
            size: 1
          }
        }
        int64_val: 1
      }
    }
    model_spec {
      name: "text_classified_model"
      version {
        value: 1
      }
      signature_name: "textclassified"
    }

    从上面的结果可以看出,我们传入了一句话

    wisegirls is its low-key quality and genuine

    分类的结果

    predictClass
    int64_val: 1

    分成第一类

    这个真的是神经网络的部署呀。

    啦啦啦 ,  Tensorflow真的很牛,上至浏览器,下到手机,一次训练,一次导出。处处运行。

    没有不敢想,只有不敢做

     The Full version can be find here

    https://github.com/weizhenzhao/TextCNN_Tensorflow_Serving/tree/master

    Thanks

    WeiZhen

  • 相关阅读:
    java设计模式之单例模式
    nginx搭建反向代理服务器详解
    java利用MultipartRequest的getFileName方法不能得到原文件名问题
    window.onload 和doucument.ready执行顺序
    Access control allow origin 简单请求和复杂请求
    bootstrap栅格系统中同行div高度不一致的解决方法
    C# web Api ajax发送json对象到action中
    winserver 08 64位安装sql05 64位提示asp版本注册
    MVC 添加Area
    SQL添加维护 计划失败
  • 原文地址:https://www.cnblogs.com/weizhen/p/9809179.html
Copyright © 2011-2022 走看看