专题二(分治)
D - 4 Values whose Sum is 0
Time Limit:15000MS Memory Limit:228000KB 64bit IO Format:%I64d & %I64u
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
#include <iostream> #include <numeric> #include <algorithm> #include <cstdio> using namespace std; int main() { int n, m; int day[100050]; scanf("%d %d", &n, &m); int max_money = 0, min_money = 0; for(int i = 0; i < n; ++i) { scanf("%d", &day[i]); max_money +=day[i]; if(day[i] > min_money) { min_money = day[i]; } } int mid = max_money + min_money; while(min_money < max_money) { mid = (min_money + max_money) / 2; int k = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += day[i]; if (sum > mid) { sum = day[i]; k++; } } if (k < m) max_money = mid; else min_money = mid + 1; } printf("%d",max_money); return 0; }
还是二分,最大值是每天的和,最小值就是钱最多的那天,然后通过二分,看M是否符合要求,就这样,继续下一道了