zoukankan      html  css  js  c++  java
  • ACM MST Connect the Cities

    Connect the Cities
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
     

    Input

    The first line contains the number of test cases.
    Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities.
    To make it easy, the cities are signed from 1 to n.
    Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
    Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.
     

    Output

    For each case, output the least money you need to take, if it’s impossible, just output -1.
     

    Sample Input

    1 6 4 3 1 4 2 2 6 1 2 3 5 3 4 33 2 1 2 2 1 3 3 4 5 6
     

    Sample Output

    1
     
     
    好奇怪,g++交TLE了,c++叫过了
     
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    int t,n,m,k,sum;
    int father[505];
    struct Road
    {
        int a,b,value;
    } road[30000];
    int find(int x)
    {
        if(x!=father[x])
            father[x]=find(father[x]);
        return father[x];
    }
    void merge(int x,int y,int z,int &tp)
    {
        int a,b;
        a=find(x);
        b=find(y);
        if(a!=b)
        {
            tp+=z;
            father[a]=b;
        }
    }
    
    bool cmp(const Road &a,const Road &b)
    {
        return a.value<b.value;
    }
    
    
    
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d%d",&n,&m,&k);
            for(int i=1; i<=m; i++)
            {
                scanf("%d %d %d",&road[i].a,&road[i].b,&road[i].value);
            }
            int tt,tmp,x,y;
            int cnt = m;
            while(k--)
            {
                scanf("%d%d",&tt,&x);
                while(--tt)
                {
                    scanf("%d",&y);
                    road[++cnt].a = x;
                    road[cnt].b = y;
                    road[cnt].value = 0;;
                    x=y;
                }
            }
            sum = 0;
            sort(road+1,road+cnt+1,cmp);
    //        for(int i=1; i<=cnt; i++)
    //            printf("%d %d %d
    ",road[i].a,road[i].b,road[i].value);
            for(int i=1;i<=n;i++)
                father[i]=i;
            for (int i=1;i<=cnt;i++)
            {
                merge(road[i].a,road[i].b,road[i].value,sum);
            }
            int mother[505];
            for(int i=1; i<=n; i++)
            {
                mother[i] = find(i);
            }
            bool ok = 1;
            for(int i = 1; i<n; i++)
            {
                if(mother[i]!=mother[i+1])
                {
                    ok=0;
                    break;
                }
            }
            if(ok)
                printf("%d
    ",sum);
            else
                printf("-1
    ");
        }
    }
    

      

  • 相关阅读:
    二值形态学——开、闭运算
    二值形态学——腐蚀与膨胀 及 C语言代码实现
    数学形态学处理-基本符号和术语
    【OpenCV】图像增强---灰度变换、直方图均衡化
    【OpenCV】【MFC】图片、视频、摄像头输入响应【详细图解】
    【OpenCV】三种方式操作图像像素
    【OpenCV】透视变换矫正
    数字图像处理基础
    Voronoi图及matlab实现
    粒子群优化算法PSO及matlab实现
  • 原文地址:https://www.cnblogs.com/wejex/p/3261921.html
Copyright © 2011-2022 走看看