zoukankan      html  css  js  c++  java
  • ACM MST Connect the Cities

    Connect the Cities
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
     

    Input

    The first line contains the number of test cases.
    Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities.
    To make it easy, the cities are signed from 1 to n.
    Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
    Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.
     

    Output

    For each case, output the least money you need to take, if it’s impossible, just output -1.
     

    Sample Input

    1 6 4 3 1 4 2 2 6 1 2 3 5 3 4 33 2 1 2 2 1 3 3 4 5 6
     

    Sample Output

    1
     
     
    好奇怪,g++交TLE了,c++叫过了
     
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    int t,n,m,k,sum;
    int father[505];
    struct Road
    {
        int a,b,value;
    } road[30000];
    int find(int x)
    {
        if(x!=father[x])
            father[x]=find(father[x]);
        return father[x];
    }
    void merge(int x,int y,int z,int &tp)
    {
        int a,b;
        a=find(x);
        b=find(y);
        if(a!=b)
        {
            tp+=z;
            father[a]=b;
        }
    }
    
    bool cmp(const Road &a,const Road &b)
    {
        return a.value<b.value;
    }
    
    
    
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d%d",&n,&m,&k);
            for(int i=1; i<=m; i++)
            {
                scanf("%d %d %d",&road[i].a,&road[i].b,&road[i].value);
            }
            int tt,tmp,x,y;
            int cnt = m;
            while(k--)
            {
                scanf("%d%d",&tt,&x);
                while(--tt)
                {
                    scanf("%d",&y);
                    road[++cnt].a = x;
                    road[cnt].b = y;
                    road[cnt].value = 0;;
                    x=y;
                }
            }
            sum = 0;
            sort(road+1,road+cnt+1,cmp);
    //        for(int i=1; i<=cnt; i++)
    //            printf("%d %d %d
    ",road[i].a,road[i].b,road[i].value);
            for(int i=1;i<=n;i++)
                father[i]=i;
            for (int i=1;i<=cnt;i++)
            {
                merge(road[i].a,road[i].b,road[i].value,sum);
            }
            int mother[505];
            for(int i=1; i<=n; i++)
            {
                mother[i] = find(i);
            }
            bool ok = 1;
            for(int i = 1; i<n; i++)
            {
                if(mother[i]!=mother[i+1])
                {
                    ok=0;
                    break;
                }
            }
            if(ok)
                printf("%d
    ",sum);
            else
                printf("-1
    ");
        }
    }
    

      

  • 相关阅读:
    OpenCv 109---Blob分析
    OpenCv 013---图像的翻转
    OpenCv 012---视频文件读写
    MenuExample
    OpenCv 011---像素归一化
    OpenCv 010---图像像素值统计
    OpenCv 009---色彩空间与色彩空间转换
    OpenCv 008---通道分离与合并
    OpenCv 007---像素操作的逻辑操作
    OpenCv 006---LUT的作用与用法
  • 原文地址:https://www.cnblogs.com/wejex/p/3261921.html
Copyright © 2011-2022 走看看