zoukankan      html  css  js  c++  java
  • 对 tensorflow 中 tf.nn.embedding_lookup 函数的解释

    http://stackoverflow.com/questions/34870614/what-does-tf-nn-embedding-lookup-function-do

    embedding_lookup function retrieves rows of the params tensor. The behavior is similar to using indexing with arrays in numpy. E.g.:

    matrix = np.random.random([1024, 64])  # 64-dimensional embeddings
    ids = np.array([0, 5, 17, 33])
    print matrix[ids]  # prints a matrix of shape [4, 64] 

    params argument can be also a list of tensors in which case the ids will be distributed among the tensors. E.g. given a list of 3 [2, 64] tensors the default behavior is that they will represent ids: [0, 3], [1, 4], [2, 5]. partition_strategy controls the way how the ids are distributed among the list. The partitioning is useful for larger scale problems when the matrix might be too large to keep in one piece.

    ========================

    Yes, this function is hard to understand, until you get the point.

    In its simplest form, it is similar to tf.gather. It returns the elements of params according to the indexes specified by ids.

    For example (assuming you are inside tf.InteractiveSession())

        params = tf.constant([10,20,30,40])
        ids = tf.constant([0,1,2,3])
        print tf.nn.embedding_lookup(params,ids).eval()

    would return [10 20 30 40], because the first element (index 0) of params is 10, the second element of params (index 1) is 20, etc.

    Similarly,

        params = tf.constant([10,20,30,40])
        ids = tf.constant([1,1,3])
        print tf.nn.embedding_lookup(params,ids).eval()

    would return: [20 20 40]

    But embedding_lookup is more than that. The params argument can be a list of tensors, rather than a single tensor.

        params1 = tf.constant([1,2])
        params2 = tf.constant([10,20])
        ids = tf.constant([2,0,2,1,2,3])
        result = tf.nn.embedding_lookup([params1, params2], ids)

    In such a case, the indexes, specified in ids, correspond to elements of tensors according to apartition strategy, where the default partition strategy is 'mod'.

    In the 'mod' strategy, index 0 corresponds to the first element of the first tensor in the list. Index 1 corresponds to the first element of the second tensor. Index 2 corresponds to the first element of the third tensor, and so on. Simply index i corresponds to the first element of the (i+1)th tensor , for all the indexes 0..(n-1), assuming params is a list of n tensors.

    Now, index n cannot correspond to tensor n+1, because the list params contains only ntensors. So index n corresponds to the second element of the first tensor. Similarly, index n+1corresponds to the second element of the second tensor, etc.

    So, in the code

        params1 = tf.constant([1,2])
        params2 = tf.constant([10,20])
        ids = tf.constant([2,0,2,1,2,3])
        result = tf.nn.embedding_lookup([params1, params2], ids)

    index 0 corresponds to the first element of the first tensor: 1

    index 1 corresponds to the first element of the second tensor: 10

    index 2 corresponds to the second element of the first tensor: 2

    index 3 corresponds to the second element of the second tensor: 20

    Thus, the result would be:

    [ 2 1 2 10 2 20]

  • 相关阅读:
    JavaMail
    Web的文件下载
    Web的文件上传
    Tcp 数据对象传输接口对象设计
    m个元素中选取n的组合
    PyQT Quick Start
    版本发布自动触发测试
    plantUML 实操
    Python 版本对比
    Some Python Tricks
  • 原文地址:https://www.cnblogs.com/welhzh/p/6826117.html
Copyright © 2011-2022 走看看