zoukankan      html  css  js  c++  java
  • wenbao与三分

     --------------------------------------------------------------------

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3010

    求n个函数在[0,1000]的最大值的最小值

     1 #include <iostream>
     2 using namespace std;
     3 const int maxn = 10009;
     4 int t, n;
     5 double a[maxn], b[maxn], c[maxn];
     6 double f(double x){
     7     double ma;
     8     for(int i = 0; i < n; ++i){
     9         double xx = a[i]*x*x + b[i]*x + c[i];
    10         if(i == 0) ma = xx;
    11         else ma = max(ma, xx);
    12     }
    13     return ma;
    14 }
    15 int main(){
    16     scanf("%d", &t);
    17     while(t--){
    18         scanf("%d", &n);
    19         for(int i = 0; i < n; ++i){
    20             scanf("%lf%lf%lf", &a[i], &b[i], &c[i]);
    21         }
    22         double l = 0.0, r = 1000.0, lx, rx;
    23         for(int i = 0; i < 100; ++i){
    24             lx = l + (r-l)/3.0;
    25             rx = r - (r-l)/3.0;
    26             if(f(lx) < f(rx)) r = rx;
    27             else l = lx;
    28         }
    29         printf("%.4lf
    ", f(l));
    30     }
    31     return 0;
    32 }

     --------------------------------------------------------------------

    http://poj.org/problem?id=3737

    面积固定,求最大的体积

     1 #include <iostream>
     2 #include <cmath>
     3 using namespace std;
     4 #define PI acos(-1.0)
     5 double s;
     6 double geth(double r){
     7     return sqrt(pow(s/PI/r-r, 2.0) - pow(r, 2.0));
     8 }
     9 double f(double r){
    10     return 1.0/3.0*PI*r*r*geth(r);
    11 }
    12 int main(){
    13     while(~scanf("%lf", &s)){
    14         double l = 0.00001, r = sqrt(s/PI/2.0)-0.00001;
    15         for(int i = 0; i < 100; ++i){
    16             double lx = l + (r-l)/3.0, rx = r - (r-l)/3.0;
    17             if(f(lx) > f(rx)) r = rx;
    18             else l = lx;
    19         }
    20         printf("%.2lf
    %.2lf
    %.2lf
    ", f(l), geth(l), l);
    21     }
    22     return 0;
    23 }

      --------------------------------------------------------------------

    http://acm.hdu.edu.cn/showproblem.php?pid=2438

    汽车拐弯

    考虑极端情况。车右边贴墙走,若车左边蹭到墙则不能通过,所以求离墙最远近的点。设车与墙的夹角为xx,则离右边墙的距离可以用l*cos(xx)+w/sin(xx)-x/tan(xx)表示出来,三分求最大值

     1 #include <iostream>
     2 #include <cmath>
     3 using namespace std;
     4 #define PI acos(-1.0)
     5 double x, y, l, w;
     6 double f(double xx){
     7     return l*cos(xx)+w/sin(xx) - x/tan(xx);
     8 }
     9 int main(){
    10     while(~scanf("%lf%lf%lf%lf", &x, &y, &l, &w)){
    11         double l = 0.00001, r = PI/2.0;
    12         for(int i = 0; i < 100; ++i){
    13             double lx = l + (r-l)/3.0, rx = r - (r-l)/3.0;
    14             if(f(lx) > f(rx)) r = rx;
    15             else l = lx;
    16         }
    17         printf("%s
    ", f(l) > y ? "no" : "yes");
    18     } 
    19     return 0;
    20 }

     --------------------------------------------------------------------

    http://acm.hdu.edu.cn/showproblem.php?pid=3400

     1 #include <iostream>
     2 #include <cmath>
     3 using namespace std;
     4 double xa, ya, xb, yb, xc, yc, xd, yd, p, q, r, Mi;
     5 double dis(double x1, double y1, double x2, double y2){
     6     return sqrt(1.0*(x1-x2)*(x1-x2)+1.0*(y1-y2)*(y1-y2));
     7 }
     8 double ff(double x, double y, double xx, double yy){
     9     return dis(x, y, xx, yy)/r + dis(xx, yy, xd, yd)/q;
    10 }
    11 double f(double x, double y){
    12     double sum = dis(xa, ya, x, y)/p;
    13     double lx = xd, ly = yd, rx = xc, ry = yc;
    14     for(int i = 0; i < 100; ++i){
    15         double llx = lx + (rx-lx)/3.0, lly = ly + (ry-ly)/3.0;
    16         double rrx = rx - (rx-lx)/3.0, rry = ry - (ry-ly)/3.0;
    17         if(ff(x, y, llx, lly) > ff(x, y, rrx, rry)) lx = llx, ly = lly;
    18         else rx = rrx, ry = rry;
    19     }
    20     double sum2 = ff(x, y, lx, ly);
    21     if(sum+sum2 < Mi) Mi = sum + sum2;
    22     return sum + sum2;
    23 }
    24 int main(){
    25     int t;
    26     scanf("%d", &t);
    27     while(t--){
    28         Mi = 10000000000.0;
    29         scanf("%lf%lf%lf%lf", &xa, &ya, &xb, &yb);
    30         scanf("%lf%lf%lf%lf", &xc, &yc, &xd, &yd);
    31         scanf("%lf%lf%lf", &p, &q, &r);
    32         double lx = xa, ly = ya, rx = xb, ry = yb;
    33         for(int i = 0; i < 100; ++i){
    34             double llx = lx + (rx-lx)/3.0, lly = ly + (ry-ly)/3.0;
    35             double rrx = rx - (rx-lx)/3.0, rry = ry - (ry-ly)/3.0;
    36             if(f(llx, lly) > f(rrx, rry)) lx = llx, ly = lly;
    37             else rx = rrx, ry = rry;
    38         }
    39         printf("%.2lf
    ", Mi);
    40     }
    41     return 0;
    42 }

     --------------------------------------------------------------------

     --------------------------------------------------------------------

     --------------------------------------------------------------------

     --------------------------------------------------------------------

     --------------------------------------------------------------------

    只有不断学习才能进步!

  • 相关阅读:
    sqlserver 库服务器导数据
    C# 关于X86/X64/AnyCpu 的关系
    VisualStudio相关序列号
    超级搜索术
    ffmypeg 视频处理类库使用方法
    远程桌面连接
    关于VS2013调试IIS应用源代码时无法进入断点的问题总结
    C#访问修饰符(public,private,protected,internal,sealed,abstract)
    MySQL结构相关
    性能瓶颈定位分析
  • 原文地址:https://www.cnblogs.com/wenbao/p/7153926.html
Copyright © 2011-2022 走看看