zoukankan      html  css  js  c++  java
  • 最小二乘拟合

    在物理实验中经常要观测两个有函数关系的物理量。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。这类问题通常有两种情况:一种是两个观测量xy之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是xy之间的函数形式还不知道,需要找出它们之间的经验公式。后一种情况常假设xy之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

     

    一、最小二乘法原理

     

    在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差。设xy的函数关系由理论公式

    yfxc1c2,……cm           0-0-1

    给出,其中c1c2,……cmm个要通过实验确定的参数。对于每组观测数据xiyii12,……,N。都对应于xy平面上一个点。若不存在测量误差,则这些数据点都准确落在理论曲线上。只要选取m组测量值代入式(0-0-1),便得到方程组

                        yifxc1c2,……cm                    0-0-2

    式中i12,……,m.m个方程的联立解即得m个参数的数值。显然N<m时,参数不能确定。

    N>m的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m个参数值,只能用曲线拟合的方法来处理。设测量中不存在着系统误差,或者说已经修正,则y的观测值yi围绕着期望值 <fxc1c2,……cm> 摆动,其分布为正态分布,则yi的概率密度为

    ,

    式中 是分布的标准误差。为简便起见,下面用C代表c1c2,……cm。考虑各次测量是相互独立的,故观测值y1y2,……cN的似然函数

    .

    取似然函数L最大来估计参数C,应使

                                     0-0-3

    取最小值:对于y的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。若为正态分布的情况,则最大似然法与最小二乘法是一致的。因权重因子 ,故式(0-0-3)表明,用最小二乘法来估计参数,要求各测量值yi的偏差的加权平方和为最小。

    根据式(0-0-3)的要求,应有

    从而得到方程组

              0-0-4

    解方程组(0-0-4),即得m个参数的估计值 ,从而得到拟合的曲线方程

    然而,对拟合的结果还应给予合理的评价。若yi服从正态分布,可引入拟合的x2量,

                                0-0-5

    把参数估计 代入上式并比较式(0-0-3),便得到最小的x2

                          0-0-6

    可以证明, 服从自由度vN-mx2分布,由此可对拟合结果作x2检验。

    x2分布得知,随机变量 的期望值为N-m。如果由式(0-0-6)计算出 接近N-m(例如 ),则认为拟合结果是可接受的;如果 ,则认为拟合结果与观测值有显著的矛盾。

     

    二、直线的最小二乘拟合

     

    曲线拟合中最基本和最常用的是直线拟合。设xy之间的函数关系由直线方程

    ya0+a1x                         (0-0-7)

    给出。式中有两个待定参数,a0代表截距,a1代表斜率。对于等精度测量所得到的N组数据(xiyi),i12……,Nxi值被认为是准确的,所有的误差只联系着yi。下面利用最小二乘法把观测数据拟合为直线。

     

    1.直线参数的估计

    前面指出,用最小二乘法估计参数时,要求观测值yi的偏差的加权平方和为最小。对于等精度观测值的直线拟合来说,由式(0-0-3)可使

                               0-0-8

    最小即对参数a(代表a0a1)最佳估计,要求观测值yi的偏差的平方和为最小。

    根据式(0-0-8)的要求,应有

    整理后得到正规方程组

    解正规方程组便可求得直线参数a0a1的最佳估计值 。即

               0-0-10

                0-0-11

    2.拟合结果的偏差

    由于直线参数的估计值 是根据有误差的观测数据点计算出来的,它们不可避免地存在着偏差。同时,各个观测数据点不是都准确地落地拟合线上面的,观测值yi与对应于拟合直线上的 这之间也就有偏差。

    首先讨论测量值yi的标准差S。考虑式(0-0-6),因等精度测量值yi所有的 都相同,可用yi的标准偏差S来估计,故该式在等精度测量值的直线拟合中应表示为

                0-0-12

    已知测量值服从正态分布时, 服从自由度vN-2x2分布,其期望值

    由此可得yi的标准偏差

                             0-0-13

    这个表示式不难理解,它与贝塞尔公式是一致的,只不过这里计算S时受到两参数 估计式的约束,故自由度变为N-2罢了。

    式(0-0-13)所表示的S值又称为拟合直线的标准偏差,它是检验拟合结果是否有效的重要标志。如果xy平面上作两条与拟合直线平行的直线

    如图0-0-1所示,则全部观测数据点(xiyi)的分布,约有68.3%的点落在这两条直线之间的范围内。

                                0-0-1  拟合直线两侧数据点的分布          

     

    下面讨论拟合参数偏差,由式(0-0-10)和(0-0-11)可见,直线拟合的两个参数估计值 yi的函数。因为假定xI是精确的,所有测量误差只有yi有关,故两个估计参数的标准偏差可利用不确定度传递公式求得,即

    把式(0-0-10)与(0-0-11)分别代入上两式,便可计算得

                 0-0-14

                 0-0-15

    三、相关系数及其显著性检验

     

    当我们把观测数据点(xiyi)作直线拟合时,还不大了解xy之间线性关系的密切程度。为此要用相关系数ρxy来判断。其定义已由式(0-0-12)给出,现改写为另一种形式,并改用r表示相关系数,得

                0-0-16

    式中 分别为xy的算术平均值。r值范围介于-1+1之间,即-1r1。当r>0时直线的斜率为正,称正相关;当r<0时直线的斜率为负,称负相关。当|r|1时全部数据点(xiyi)都落在拟合直线上。若r0xy之间完全不相关。r值愈接近±1则它们之间的线性关系愈密切。

  • 相关阅读:
    自己写的SqlHelper
    宿叶网思路
    phpMyAdmin教程 之 创建新用户/导入/导出数据库
    什么是主机空间?干什么用?
    转 sql注入
    xUtils
    仿360状态,类流量监控桌面浮动显示
    在Yii Framework中利用PHPMailer发送邮件(2011-06-02 14:06:23)
    MD5类库(hex_md5)
    MYSQL的随机查询的实现方法
  • 原文地址:https://www.cnblogs.com/wenrenhua08/p/3993629.html
Copyright © 2011-2022 走看看