题目就是给你一个图,图中部分边没有赋权值,要求你把无权的边赋值,使得s->t的最短路为l。
卡了几周的题了,最后还是经群主大大指点……做出来的……
思路就是跑最短路,然后改权值为最短路和L的差值,直到最短路为L,或者每条无权边都赋值为止。
点是0~n-1的,因为这个错了好几次= =
dijkstra超时,spfa卡过。
看到很多题解说二分,但是实在不能理解那个思路阿…………
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1005; const ll INF = 1e13+7; int n, m, l, s, t; struct edge { int from, to, next, w; } e[N*N]; int head[N], cntE; void addedge(int u, int v, int w) { e[cntE].from = u; e[cntE].to = v; e[cntE].next = head[u]; e[cntE].w = w; head[u] = cntE++; e[cntE].from = v; e[cntE].to = u; e[cntE].next = head[v]; e[cntE].w = w; head[v] = cntE++; } int cnt[N], pre[N]; ll d[N]; bool inq[N]; int spfa() { queue<int> q; memset(inq, 0, sizeof inq); memset(cnt, 0, sizeof cnt); for (int i = 0; i <= n; ++i) d[i] = INF; d[s] = 0; inq[s] = true; q.push(s); while (q.size()) { int u = q.front(); q.pop(); inq[u] = false; for (int i = head[u]; ~i; i = e[i].next) { int v = e[i].to; int c = e[i].w; if (d[u] < INF && d[v] > d[u] + c) { d[v] = d[u] + c; pre[v] = u; if (!inq[v]) { q.push(v); inq[v] = true; } } } } return d[t]; } vector<int> zeroedge; int main() { //freopen("in.txt", "r", stdin); while (~scanf("%d%d%d%d%d", &n, &m, &l, &s, &t)) { memset(head, -1, sizeof head); cntE = 0; zeroedge.clear(); int u, v, c; for (int i = 0; i < m; ++i) { scanf("%d%d%d", &u, &v, &c); addedge(u, v, c==0?1:c); if (c == 0) zeroedge.push_back(cntE-1); } ll tmp = spfa(); if (tmp > l) { puts("NO"); continue; } if (tmp == l) { // may be dont have zero edge puts("YES"); for (int i = 0; i < cntE; i += 2) { printf("%d %d %d ", e[i].from, e[i].to, e[i].w); } continue; } int fg = false; for (int i = 0; i < zeroedge.size(); ++i) { int x = zeroedge[i]; e[x].w = e[x ^ 1].w = l - tmp + 1; tmp = spfa(); if (tmp == l) { fg = true; puts("YES"); for (int i = 0; i < cntE; i += 2) { printf("%d %d %d ", e[i].from, e[i].to, e[i].w); } break; } } if (!fg) puts("NO"); } return 0; }