zoukankan      html  css  js  c++  java
  • Context Encoders: Feature Learning by Inpainting

    论文来源:2016 CVPR

    (1)所解决问题

    通过基于上下文像素预测驱动的无监督的视觉特征的学习算法,利用周围的图像信息来推断缺失的图像

    本文的上下文编码器需要解决一个困难的任务:填补图像中大量缺失的区域,而这些区域无法从附近的像素中获得“提示”。

    (2)所构建网络

    主要思路:

    主要思路是结合Encoder-Decoder 网络结构和 GAN (Generative Adversarial Networks),Encoder-Decoder 阶段用于学习图像特征和生成图像待修补区域对应的预测图,GAN部分用于判断预测图来自训练集和预测集的可能性,当生成的预测图与GroundTruth在图像内容上达到一致,并且GAN的判别器无法判断预测图是否来自训练集或预测集时,就认为网络模型参数达到了最优状态

    33okge.png

    33oF3D.png

    网络训练的过程中损失函数都由两部分组成:Encoder-decoder 部分的图像内容约束(Reconstruction Loss)GAN部分的对抗损失(Adversarial Loss)。Context Encoders 采用最简单的整体内容约束,也就是预测图与原图的l2 距离。

    (3)评价指标

    文章使用来自两个数据集的图像进行实验:不使用任何附带的标签的Paris StreetView和ImageNet。

    33oi9O.png

    33oC4K.png

    文章从两个方面显示了其优越性,一方面为上下文编码器在填充缺失区域的能力,另一方面使用上下文编码器作为图像分类、目标检测和语义分割的前训练步骤,演示了其学习到的特征可以转移到其他任务。文章将这些任务的结果与其他无监督或自监督方法的结果进行比较,证明其方法优于以前的方法。

  • 相关阅读:
    网络图片获取工具类
    压缩、解压工具类
    字符串排序简单的工具类,数组转list,list转数组
    mysql 实现 sqlserver的row_number over() 方法
    Mysql安装配置及常见问题解决
    Mysql数据库主从配置
    PageHelper:在系统中发现了多个分页插件,请检查系统配置
    Kibana-Elasticsearch分析工具
    Elasticsearch基础环境配置和使用
    取消IDEA双击shift时出现的全局搜索
  • 原文地址:https://www.cnblogs.com/wenshinlee/p/12355848.html
Copyright © 2011-2022 走看看