Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
class Solution { public int minSubArrayLen(int s, int[] nums) { int sum = 0, from = 0, win = Integer.MAX_VALUE; for (int i = 0; i < nums.length; i++) { sum += nums[i]; while (sum >= s) { win = Math.min(win, i - from + 1); sum -= nums[from++]; } } return (win == Integer.MAX_VALUE) ? 0 : win; } }
先加,加到位了就从头开始逐个减小