Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
class Solution { public int[] countBits(int num) { int[] res = new int[num + 1]; res[0] = 0; for(int i = 1; i <= num; i++){ int k = i; int t = 0; while(k != 0){ if((k & 1) == 1) t++; k = k >> 1; } res[i] = t; } return res; } }
位操作,注意 k & 1,因为&的优先级很低,所以需要括号。
class Solution { public int[] countBits(int num) { int[] f = new int[num + 1]; for (int i=1; i<=num; i++) f[i] = f[i >> 1] + (i & 1); return f; } }
这个方法有点屌,dp
dp[ i ] == 最后一位&1 + dp[ i >> 1]。