zoukankan      html  css  js  c++  java
  • 1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance

    There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

    Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

    Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.

    Example 1:

    Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
    Output: 3
    Explanation: The figure above describes the graph. 
    The neighboring cities at a distanceThreshold = 4 for each city are:
    City 0 -> [City 1, City 2] 
    City 1 -> [City 0, City 2, City 3] 
    City 2 -> [City 0, City 1, City 3] 
    City 3 -> [City 1, City 2] 
    Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.
    

    Example 2:

    Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
    Output: 0
    Explanation: The figure above describes the graph. 
    The neighboring cities at a distanceThreshold = 2 for each city are:
    City 0 -> [City 1] 
    City 1 -> [City 0, City 4] 
    City 2 -> [City 3, City 4] 
    City 3 -> [City 2, City 4]
    City 4 -> [City 1, City 2, City 3] 
    The city 0 has 1 neighboring city at a distanceThreshold = 2.
    

    Constraints:

    • 2 <= n <= 100
    • 1 <= edges.length <= n * (n - 1) / 2
    • edges[i].length == 3
    • 0 <= fromi < toi < n
    • 1 <= weighti, distanceThreshold <= 10^4
    • All pairs (fromi, toi) are distinct.
    public int findTheCity(int n, int[][] edges, int distanceThreshold) {
            int[][] dis = new int[n][n];
            int res = 0, smallest = n;
            for (int[] row : dis)
                Arrays.fill(row, 100000);
            for (int[] e : edges)
                dis[e[0]][e[1]] = dis[e[1]][e[0]] = e[2];
            for (int i = 0; i < n; ++i)
                dis[i][i] = 0;
               
            for(int i = 0; i < n; i++){
                    for(int j = 0; j < n; j++){
                        System.out.print(dis[i][j] + " ");
                    }
                System.out.println();
            }
            for (int k = 0; k < n; ++k)
                for (int i = 0; i < n; ++i)
                    for (int j = 0; j < n; ++j)
                        dis[i][j] = Math.min(dis[i][j], dis[i][k] + dis[k][j]);
               
            for(int i = 0; i < n; i++){
                    for(int j = 0; j < n; j++){
                        System.out.print(dis[i][j] + " ");
                    }
                System.out.println();
            }
               
            for (int i = 0; i < n; i++) {
                int count = 0;
                for (int j = 0; j < n; ++j)
                    if (dis[i][j] <= distanceThreshold)
                        ++count;
                if (count <= smallest) {
                    res = i;
                    smallest = count;
                }
            }
            return res;
        }

    https://leetcode.com/problems/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance/discuss/490312/JavaC%2B%2BPython-Easy-Floyd-Algorithm

    Floyd warshall算法的应用

    初始化的顺序应该是:最大值(一般值)-- 0或edges。

    初始化的时候要注意是不是无向图,如果是的话要写成dist[i][j]  = dist[j][i] = w

  • 相关阅读:
    利用 chunked 类型响应实现后台请求的监听
    C/C++ 中的宏/Macro
    SSL/TLS 链接的建立/握手
    C/C++ 中 `printf` 格式化
    多媒体文件的容器与编解码器的关系
    Unix 开发中的 Make 三连
    shell 中长命令的换行处理
    C++ float vs double
    Xcode 中配置 clang-format 格式化 C++ 代码
    C++ `endl` 与 ` ` 的区别
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/12244951.html
Copyright © 2011-2022 走看看