zoukankan      html  css  js  c++  java
  • 918. Maximum Sum Circular Subarray

    Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

    Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

    Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

    Example 1:

    Input: [1,-2,3,-2]
    Output: 3
    Explanation: Subarray [3] has maximum sum 3
    

    Example 2:

    Input: [5,-3,5]
    Output: 10
    Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
    

    Example 3:

    Input: [3,-1,2,-1]
    Output: 4
    Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
    

    Example 4:

    Input: [3,-2,2,-3]
    Output: 3
    Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
    

    Example 5:

    Input: [-2,-3,-1]
    Output: -1
    Explanation: Subarray [-1] has maximum sum -1
    

    Note:

    1. -30000 <= A[i] <= 30000
    2. 1 <= A.length <= 30000
    class Solution {
        public int maxSubarraySumCircular(int[] A) {
            int total = 0, curmin = 0, curmax = 0, max = Integer.MIN_VALUE, min = Integer.MAX_VALUE;
            for(int num: A){
                curmin = Math.min(num, num + curmin);
                min = Math.min(min, curmin);
                curmax = Math.max(num, num + curmax);
                max = Math.max(max, curmax);
                total += num;
            }
            return max > 0 ? Math.max(total - min, max) : max;
        }
    }

    lee哥真乃人中龙凤

    https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass

  • 相关阅读:
    CSP2019题解
    [NOI2019]弹跳(KD-Tree)
    集合框架面试题
    注解
    WiFi攻防
    简单完整讲述Servlet生命周期
    Java多线程
    Java--面向对象讲解
    layUi
    java提高篇(三)-----理解java的三大特性之多态
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/12898532.html
Copyright © 2011-2022 走看看