zoukankan      html  css  js  c++  java
  • 992. Subarrays with K Different Integers

    Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K.

    (For example, [1,2,3,1,2] has 3 different integers: 12, and 3.)

    Return the number of good subarrays of A.

    Example 1:

    Input: A = [1,2,1,2,3], K = 2
    Output: 7
    Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2].
    

    Example 2:

    Input: A = [1,2,1,3,4], K = 3
    Output: 3
    Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4].
    

    Note:

    1. 1 <= A.length <= 20000
    2. 1 <= A[i] <= A.length
    3. 1 <= K <= A.length
    class Solution {
        public int subarraysWithKDistinct(int[] A, int K) {
            int res = 0, prefix = 0;
            //m[A[j]] is the start of the sliding window, should keep m[A[j]] == 1.
            int[] m = new int[A.length + 1];// given "1 <= A[i] <= A.length", use an array instead of hashset to store frequency.
                    
            for (int i = 0, j = 0, cnt = 0; i < A.length; ++i) {
                if (m[A[i]]++ == 0) ++cnt;//if current element never shows up, cnt++
                if (cnt > K) {//If cnt > k, means current prefix won't work anymore, reset prefix = 0 to start a new sequence
                  --m[A[j++]]; --cnt; prefix = 0; 
                }
                while (m[A[j]] > 1) {// Always keep m[A[j]] == 1 to fit the logic
                  ++prefix; --m[A[j++]]; //Move j forwardly
                }
                if (cnt == K) res += prefix + 1;// Current cnt == k means the window is what we're looking for, we add prefix windows and current window.
            }
            return res;
        } 
    }

    https://www.programmercoach.com/2019/02/interview-pears-sliding-window.html#more

  • 相关阅读:
    mouseover 有一个多次触发的问题
    2019牛客多校第一场 H.XOR
    luoguP4570 [BJWC2011]元素(线性基)
    线性基
    2019牛客多校第七场 E.Find the median
    2019牛客多校第七场
    2019牛客多校第五场
    支配树
    2019牛客多校第四场
    Codeforces 1195E OpenStreetMap(单调队列)
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/13161078.html
Copyright © 2011-2022 走看看