Given an array of integers arr
of even length n
and an integer k
.
We want to divide the array into exactly n / 2
pairs such that the sum of each pair is divisible by k
.
Return True If you can find a way to do that or False otherwise.
Example 1:
Input: arr = [1,2,3,4,5,10,6,7,8,9], k = 5 Output: true Explanation: Pairs are (1,9),(2,8),(3,7),(4,6) and (5,10).
Example 2:
Input: arr = [1,2,3,4,5,6], k = 7 Output: true Explanation: Pairs are (1,6),(2,5) and(3,4).
Example 3:
Input: arr = [1,2,3,4,5,6], k = 10 Output: false Explanation: You can try all possible pairs to see that there is no way to divide arr into 3 pairs each with sum divisible by 10.
Example 4:
Input: arr = [-10,10], k = 2 Output: true
Example 5:
Input: arr = [-1,1,-2,2,-3,3,-4,4], k = 3 Output: true
Constraints:
arr.length == n
1 <= n <= 10^5
n
is even.-10^9 <= arr[i] <= 10^9
1 <= k <= 10^5
class Solution { public boolean canArrange(int[] arr, int k) { int n = arr.length; for(int i = 0; i < n; i++){ arr[i] = ((arr[i] % k) + k) % k; } Arrays.sort(arr); int zero = 0; while(zero < n && arr[zero] == 0) zero++; if(zero % 2 != 0) return false; for(int left = zero, right = n - 1; left < right;){ if(arr[left] + arr[right] != k) return false; else{ right--; left++; } } return true; } }
思路:把数组里的书normalize成[0, k-1], 完了之后算0的数量,如果是奇数铁return fasle
排序后加首尾,如果不等于k也是铁false
class Solution { public boolean canArrange(int[] arr, int k) { int[] frequency = new int[k]; for(int num : arr){ num %= k; if(num < 0) num += k; frequency[num]++; } if(frequency[0]%2 != 0) return false; for(int i = 1; i <= k/2; i++) if(frequency[i] != frequency[k-i]) return false; return true; } }
这个也差不多一个道理,用一个frequency数组存mod后的数组元素,然后对比相对位置的frequency是否相等即可