Given a directed, acyclic graph of N
nodes. Find all possible paths from node 0
to node N-1
, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example: Input: [[1,2], [3], [3], []] Output: [[0,1,3],[0,2,3]] Explanation: The graph looks like this: 0--->1 | | v v 2--->3 There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
- The number of nodes in the graph will be in the range
[2, 15]
. - You can print different paths in any order, but you should keep the order of nodes inside one path.
class Solution { public List<List<Integer>> allPathsSourceTarget(int[][] graph) { List<List<Integer>> res = new ArrayList(); int n = graph.length; Map<Integer, List<Integer>> map = new HashMap(); for(int i = 0; i < graph.length; i++) { for(int j = 0; j < graph[i].length; j++) { map.computeIfAbsent(i,l -> new ArrayList<>()).add(graph[i][j]); } } dfs(res, new ArrayList(), map, 0, n - 1); return res; } public void dfs(List<List<Integer>> res, List<Integer> list, Map<Integer, List<Integer>> map, int cur, int end) { if(cur == end) { list.add(cur); res.add(new ArrayList(list)); return; } list.add(cur); for(int child: map.get(cur)) { dfs(res, list, map, child, end); list.remove(list.size() - 1); } return; } }
先存成图,然后dfs,因为是DAG,所以不用boolean visited[ ]