zoukankan      html  css  js  c++  java
  • 480. Sliding Window Median

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

    Examples:

    [2,3,4] , the median is 3

    [2,3], the median is (2 + 3) / 2 = 2.5

    Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.

    For example,
    Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

    Window position                Median
    ---------------               -----
    [1  3  -1] -3  5  3  6  7       1
     1 [3  -1  -3] 5  3  6  7       -1
     1  3 [-1  -3  5] 3  6  7       -1
     1  3  -1 [-3  5  3] 6  7       3
     1  3  -1  -3 [5  3  6] 7       5
     1  3  -1  -3  5 [3  6  7]      6
    

    Therefore, return the median sliding window as [1,-1,-1,3,5,6].

    Note:
    You may assume k is always valid, ie: k is always smaller than input array's size for non-empty array.
    Answers within 10^-5 of the actual value will be accepted as correct.

    class Solution {
        public double[] medianSlidingWindow(int[] nums, int k) {
            PriorityQueue<Integer> maxheap = new PriorityQueue<>((a, b) -> b - a);
            PriorityQueue<Integer> minheap = new PriorityQueue();
            int l = 0, count = 0, ind = 0;
            double[] res = new double[nums.length - k + 1]; 
            for(int r = 0; r < nums.length; r++) {
                if(maxheap.size() == 0 || maxheap.peek() >= nums[r]) maxheap.offer(nums[r]);
                else minheap.offer(nums[r]);
                
                balance(maxheap, minheap);
                
                if(r -l + 1 > k) {
                    if(maxheap.contains(nums[l])) {
                        maxheap.remove(nums[l]);
                    }
                    else minheap.remove(nums[l]);
                    l++;
                    balance(maxheap, minheap);
                }
                if(r - l + 1 == k) {
                    res[ind++] = getmedian(maxheap, minheap);
                }
            }
            return res;
        }
        
        public double getmedian(PriorityQueue<Integer> maxheap, PriorityQueue<Integer> minheap) {
            if(maxheap.size() == minheap.size()) return ((long)maxheap.peek() + minheap.peek()) * 0.5;
            else return (double)maxheap.peek();
        }
        
        public void balance(PriorityQueue<Integer> maxheap, PriorityQueue<Integer> minheap) {
            if(maxheap.size() - 1 > minheap.size()) minheap.offer(maxheap.poll());
            else if(maxheap.size() < minheap.size()) maxheap.offer(minheap.poll());
        }
    }

    sliding window + max/min heap 40/42 passed, 直觉告诉我是remove那里出了问题,

    草草草草草,结果你猜是什么原因?如果不是跑了别人的答案,我永远不会知道错误杵在这里

    PriorityQueue<Integer> maxheap = new PriorityQueue<>((a, b) -> b - a);

    我??? 结果只要换成PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Collections.reverseOrder());就可以了

    我大概知道了,(a, b) -> b - a在b很大a很小的时候可能会溢出?因为换成(x, y) -> Integer.compare(y, x)又没事了,牛逼了

    class Solution {
        public double[] medianSlidingWindow(int[] nums, int k) {
            PriorityQueue<Integer> maxheap = new PriorityQueue<>(Collections.reverseOrder());
            PriorityQueue<Integer> minheap = new PriorityQueue();
            int l = 0, count = 0, ind = 0;
            double[] res = new double[nums.length - k + 1]; 
            for(int r = 0; r < nums.length; r++) {
                if(maxheap.size() == 0 || maxheap.peek() > nums[r]) maxheap.offer(nums[r]);
                else minheap.offer(nums[r]);
                
                balance(maxheap, minheap);
                
                if(r -l + 1 > k) {
                    if(maxheap.contains(nums[l])) {
                        maxheap.remove(nums[l]);
                    }
                    else minheap.remove(nums[l]);
                    l++;
                    balance(maxheap, minheap);
                }
                if(r - l + 1 == k) {
                    res[ind++] = getmedian(maxheap, minheap);
                }
            }
            return res;
        }
        
        public double getmedian(PriorityQueue<Integer> maxheap, PriorityQueue<Integer> minheap) {
            if(maxheap.size() == minheap.size()) return ((long)maxheap.peek() + minheap.peek()) * 0.5;
            else return maxheap.peek();
        }
        
        public void balance(PriorityQueue<Integer> maxheap, PriorityQueue<Integer> minheap) {
            if(maxheap.size() - 1 > minheap.size()) minheap.offer(maxheap.poll());
            else if(maxheap.size() < minheap.size()) maxheap.offer(minheap.poll());
        }
    }


  • 相关阅读:
    搭建appium的android环境
    SonarQube的安装、配置与使用
    使用jsonpath解析json内容
    浅析selenium的page object模式
    java读取word内容
    Java之XML操作:从XML中直接获取数据
    Java之指定Junit测试方法的执行顺序举例
    Mybatis之执行自定义SQL举例
    SpringBoot之处理JSON数据举例
    Mybatis之执行insert、update和delete操作时自动提交
  • 原文地址:https://www.cnblogs.com/wentiliangkaihua/p/13601144.html
Copyright © 2011-2022 走看看