zoukankan      html  css  js  c++  java
  • HDU 5912 Fraction(模拟——分子式化简求解)

    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=5912

    Problem Description
    Mr. Frog recently studied how to add two fractions up, and he came up with an evil idea to trouble you by asking you to calculate the result of the formula below:


    As a talent, can you figure out the answer correctly?
     
    Input
    The first line contains only one integer T, which indicates the number of test cases.

    For each test case, the first line contains only one integer n (n8).

    The second line contains n integers: a1,a2,an(1ai10).
    The third line contains n integers: b1,b2,,bn(1bi10).
     
    Output
    For each case, print a line “Case #x: p q”, where x is the case number (starting from 1) and p/q indicates the answer.

    You should promise that p/q is irreducible.
     
    Sample Input
    1
    2
    1 1
    2 3
     
    Sample Output
    Case #1: 1 2
    Hint
    Here are the details for the first sample: 2/(1+3/1) = 1/2
     
    Source
    题意描述:
    给出上述图中的分子式,给出ai和bi
    计算该分子形式的最简结果
    解题思路:
    总体来说还是比较考验数学思维的。
    简单实用代入法看一下,例如只有a1,a2和b1,b2,那么结果可以写成b1/(a1+b2/a2)
    初始是fz(分子)=b2,fm=a2,经过化简可得结果为b1*fm/(a1*fm+fz),容易得到fz += fm*a[i];和fm *= b[i];只不过fz和fm需要交换一下(仔细验算一下)。
    代码实现:
     1 #include<stdio.h>
     2 #include<algorithm>
     3 using namespace std;
     4 int gcd(int a,int b)
     5 {
     6     return b==0? a : gcd(b,a%b);
     7 }
     8 int main()
     9 {
    10     int T,t=1,n,i,a[11],b[11],k;
    11     scanf("%d",&T);
    12     while(T--)
    13     {
    14         scanf("%d",&n);
    15         for(i=1;i<=n;i++) scanf("%d",&a[i]);
    16         for(i=1;i<=n;i++) scanf("%d",&b[i]);
    17         int fz=b[n],fm=a[n];
    18         for(i=n-1;i>=1;i--)
    19         {
    20             fz += fm*a[i];
    21             fm *= b[i];
    22             swap(fz,fm);
    23         }
    24         k=gcd(fz,fm);
    25         printf("Case #%d: %d %d
    ",t++,fz/k,fm/k);
    26     }
    27     return 0;
    28  } 
     
  • 相关阅读:
    zepto.js常用操作
    使用require.js
    iscroll.js文档
    EasyUI Resizable 可调整尺寸
    EasyUI Droppable 可放置
    EasyUI Draggable 可拖动
    EasyUI Parser 解析器
    EasyUI Easyloader 加载器
    Jquery EasyUI插件
    从MySQL随机选取数据
  • 原文地址:https://www.cnblogs.com/wenzhixin/p/7512800.html
Copyright © 2011-2022 走看看