zoukankan      html  css  js  c++  java
  • HDU 3371 Connect the Cities(prim算法)

    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=3371

    Problem Description
    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
     
    Input
    The first line contains the number of test cases.
    Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities.
    To make it easy, the cities are signed from 1 to n.
    Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q.
    Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.
     
    Output
    For each case, output the least money you need to take, if it’s impossible, just output -1.
     
    Sample Input
    1
    6 4 3
    1 4 2
    2 6 1
    2 3 5
    3 4 33
    2 1 2
    2 1 3
    3 4 5 6
     
    Sample Output
    1
     
    Author
    dandelion
     
    Source
     1 /*
     2 问题
     3 输入已经存在的图以及将要增加的边及其花费,计算并输出最小生成树还需要的最小花费
     4 
     5 解题思路
     6 将现在的图连起来使得它们的花费为0,再加入将要建设的边,直接跑一边prim即可,注意不能构成最小生成树
     7 的情况说出-1,代码中的u == -1 结束很关键。 
     8 */ 
     9 #include<cstdio>
    10 #include<cstring>
    11 
    12 const int N=550;
    13 const int INF=99999999;
    14 int e[N+10][N+10],a[N],dis[N],bk[N];
    15 int prim();
    16 int n,m,k;
    17 
    18 int main(){
    19     int T,i,j,q,t1,t2,t3,t;
    20     scanf("%d",&T);
    21     while(T--){
    22         for(i=1;i<=N;i++){
    23             for(j=1;j<=N;j++){
    24                 e[i][j] = i==j?0:INF;
    25             }
    26         }
    27         scanf("%d%d%d",&n,&m,&k);
    28         for(i=1;i<=m;i++){
    29             scanf("%d%d%d",&t1,&t2,&t3);
    30             if(e[t1][t2] > t3){
    31                 e[t1][t2] = t3;
    32                 e[t2][t1] = t3;
    33             }    
    34         }
    35         for(i=1;i<=k;i++){
    36             scanf("%d",&t);
    37             for(j=1;j<=t;j++){
    38                 scanf("%d",&a[j]);
    39             }
    40             for(j=1;j<=t-1;j++){
    41                 for(q=j+1;q<=t;q++){
    42                     e[ a[j] ][ a[q] ]=0;
    43                     e[ a[q] ][ a[j] ]=0;
    44                 }
    45             }
    46         }
    47         
    48         /*for(i=1;i<=n;i++){
    49             for(j=1;j<=n;j++){
    50                 printf("%9d",e[i][j]);
    51             }
    52             printf("
    ");
    53         }*/
    54         int ans=prim();
    55         if(ans == -1)
    56             printf("-1
    ");
    57         else
    58             printf("%d
    ",ans);
    59     }
    60     return 0;
    61 } 
    62 
    63 int prim()
    64 {
    65     int i;
    66     for(i=1;i<=n;i++)
    67         dis[i]=e[1][i];
    68     memset(bk,0,sizeof(bk));
    69     bk[1]=1;
    70     int c=1,sum=0,mina,u;
    71     
    72     while(c < n){
    73         mina=INF;
    74         u=-1;
    75         for(i=1;i<=n;i++){
    76             if(!bk[i] && dis[i] < mina){
    77                 mina=dis[i];
    78                 u=i;
    79             }
    80         }
    81         //printf("u==%d
    ",u);
    82         if(u == -1)
    83             break;
    84         bk[u]=1;
    85         c++;
    86         sum += dis[u];
    87         for(i=1;i<=n;i++){
    88             if(!bk[i] && dis[i] > e[u][i])
    89                 dis[i] = e[u][i];
    90         }
    91     }
    92     if(u == -1)
    93         return -1;
    94     return sum;    
    95 }
     
  • 相关阅读:
    HashSet集合保证元素唯一性的原理 底层代码 ---有用
    集合(下) ---有用
    集合(上) Colection方法 并发修改异常
    Hive -- Hive面试题及答案sql语句 ---阿善有时间看
    hive面试题总结(2020最新版) hive优化方面 ---阿善重要
    hive面试题总结(2020最新版)
    Hive常见面试题1.0
    Hive面试题收集 ---阿善重要
    promise的三个缺点
    js中常见的高阶函数
  • 原文地址:https://www.cnblogs.com/wenzhixin/p/9053855.html
Copyright © 2011-2022 走看看