import tensorflow as tf
import numpy as np
#添加一层inputs输入的数据,in_size为输入节点数,out_size为输出节点数,下一个为激励函数
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights=tf.Variable(tf.random_normal([in_size,out_size])) #权重
biases=tf.Variable(tf.zeros([1,out_size]+0.1)) #偏移量
Wx_plus_b=tf.matmul(inputs,Weights)+biases #计算公式
if activation_function is None: #是否用激励函数
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
x_data=np.linspace(-1,1,300)[:,np.newaxis] #初始输入值
noise=np.random.normal(0,0.05,x_data.shape) #干扰大小 计算
y_data=np.square(x_data)-0.5+noise #输出值
xs=tf.placeholder(tf.float32,[None,1]) #输入占位符
ys=tf.placeholder(tf.float32,[None,1]) #输出占位符
#l1=add_layer(x_data,1,10,activation_function=tf.nn.relu)
l1=add_layer(xs,1,10,activation_function=tf.nn.relu) #添加一层中间计算层,使用激励函数
prediction=add_layer(l1,10,1,activation_function=None) #添加输出层,
#loss 是估计值和真实值之映射到某一空间的误差
#loss=tf.reduce_mean(tf.reduce_sum(tf.square(y_data-predition),reduction_indices=[1]))
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.initialize_all_variable()
sess = tf.Session()
sess.run(init)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i % 50:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))