给出来的数据量还是能够的。题意:有若干个牧场,至少有两个不连通,一个牧场的直径就是牧场中最远的两个牧区的距离。要求找出几个牧场中最短的直径,就是找一条路径连接几个牧区。使这个直径终于最小。
基本方法。把整个图依据输入划分成几个不连通的牧区,然后求出每一个牧区的直径(即每一个连通块中的最长路径),然后枚举两个不在同一牧区的点,设blocks[i]记录第i个节点所在连通块的直径。那么result = min(blocks[i] + dis(i, j) + blocks[j]),能够用并查级推断两个点是否连通
/* ID:kevin_s1 PROG:cowtour LANG:C++ */ #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <vector> #include <map> #include <set> #include <algorithm> #include <cstdlib> #include <list> #include <cmath> using namespace std; #define MAXN 175 const double INF = 1E15; //gobal variable==== int N; struct point{ double x; double y; }points[MAXN]; double Graph[MAXN][MAXN]; double result; int Father[MAXN]; int Rank[MAXN]; double blocks[MAXN]; //================== //function========== int Find(int x){ while(x != Father[x]){ x = Father[x]; } return x; } bool check(int x, int y){ x = Find(x); y = Find(y); if(x == y) return true; else return false; } void Union(int x, int y){ x = Find(x); y = Find(y); if(x == y) return; if(Rank[x] >= Rank[y]){ Father[y] = x; Rank[x] += Rank[y]; } else{ Father[x] = y; Rank[y] += Rank[x]; } } double dist(point start, point end){ return sqrt((end.x - start.x)*(end.x - start.x) + (end.y - start.y)*(end.y - start.y)); } void Input(){ cin>>N; for(int i = 1; i <= N; i++){ cin>>points[i].x>>points[i].y; blocks[i] = -1; Father[i] = i; Rank[i] = 1; } char flg; for(int i = 1; i <= N; i++) for(int j = 1; j <= N; j++){ cin>>flg; if(i == j) Graph[i][j] = 0; else if(flg == '1'){ Union(i, j); Graph[i][j] = dist(points[i], points[j]); } else if(flg == '0') Graph[i][j] = INF; } } void Floyd(){ for(int k = 1; k <= N; k++){ for(int i = 1; i <= N; i++){ for(int j = 1; j <= N; j++){ if(k == i || k == j) continue; if(Graph[i][j] > Graph[i][k] + Graph[k][j]){ Graph[i][j] = Graph[i][k] + Graph[k][j]; } } } } } void print(){ for(int i = 1; i <= N; i++){ for(int j = 1; j <= N; j++){ cout<<Graph[i][j]<<" "; } cout<<endl; } } //================== int main(){ freopen("cowtour.in","r",stdin); freopen("cowtour.out","w",stdout); Input(); Floyd(); for(int i = 1; i <= N; i++){ for(int j = 1; j <= N; j++){ if(Graph[i][j] != INF && blocks[i] < Graph[j][i]) blocks[i] = Graph[j][i]; } } result = INF; for(int i = 1; i <= N; i++){ for(int j = i + 1; j <= N; j++){ if(Graph[i][j] == INF && !check(i, j)){ double dis = dist(points[i], points[j]); if(blocks[i] + dis + blocks[j] < result) result = blocks[i] + dis + blocks[j]; } } } for(int i = 1; i <= N; i++) if(blocks[i] > result) result = blocks[i]; printf("%.6lf ", result); return 0; }