题目链接
- 题意:
输入一个n,求在多少个x进制下仅仅含有3、4、5、6
(1<=n<=1e12)
- 分析:
用的是比較常规的方式。对于n,最后一位必定是这四个数中的一个。能够枚举末位i,那么n-i,一定能被x进制整除。也就是说。能够找到n-i的全部因子,在这之中找到可能是答案的因子就可以。
const int MAXN = 1100000;
int prime[MAXN], tot;
bool check[MAXN];
void init()
{
FE(i, 2, MAXN)
{
if (!check[i])
prime[tot++] = i;
for (int j = 0; j < tot && i <= MAXN / prime[j]; j++)
{
check[i * prime[j]] = true;
if (i % prime[j] == 0) break;
}
}
}
struct Fac
{
LL val, num;
} fac[200];
int cnt;
vector<LL> vt;
int ok(LL t, LL i)
{
t /= i;
while (t)
{
if (t % i != 3 && t % i != 4 && t % i != 5 && t % i != 6)
break;
t /= i;
}
if (!t)
return 1;
return 0;
}
int used;
void dfs(int pos, LL val, LL n)
{
if (pos == cnt)
{
if (val > used && ok(n, val))
vt.push_back(val);
return;
}
LL t = 1;
FE(i, 0, fac[pos].num)
{
dfs(pos + 1, val * t, n);
t *= fac[pos].val;
}
}
int fun(LL n)
{
vt.clear();
cnt = 0;
LL nn = n;
for (int i = 0; i < tot && prime[i] <= n / prime[i]; i++)
if (n % prime[i] == 0)
{
fac[cnt].val = prime[i];
fac[cnt].num = 0;
while (n % prime[i] == 0)
{
n /= prime[i];
fac[cnt].num++;
}
cnt++;
}
if (n > 1)
{
fac[cnt].val = n;
fac[cnt].num = 1;
cnt++;
}
dfs(0, 1, nn);
vt.erase(unique(all(vt)), vt.end());
REP(i, vt.size())
{
debugI(vt[i]);
}
return vt.size();
}
int solve(LL n)
{
int ret = 0;
for (used = 3; used <= 6; used++)
ret += fun(n - used);
return ret;
}
int main()
{
init();
int T;
RI(T);
FE(kase, 1, T)
{
LL n;
cin >> n;
if (n < 3)
printf("Case #%d: 0
", kase);
else if (n <= 6)
printf("Case #%d: -1
", kase);
else
printf("Case #%d: %d
", kase, solve(n));
}
return 0;
}