zoukankan      html  css  js  c++  java
  • Good Bye 2015 C New Year and Domino(dp)

    C. New Year and Domino
    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    They say "years are like dominoes, tumbling one after the other". But would a year fit into a grid? I don't think so.

    Limak is a little polar bear who loves to play. He has recently got a rectangular grid with h rows and w columns. Each cell is a square, either empty (denoted by '.') or forbidden (denoted by '#'). Rows are numbered 1 through h from top to bottom. Columns are numbered1 through w from left to right.

    Also, Limak has a single domino. He wants to put it somewhere in a grid. A domino will occupy exactly two adjacent cells, located either in one row or in one column. Both adjacent cells must be empty and must be inside a grid.

    Limak needs more fun and thus he is going to consider some queries. In each query he chooses some rectangle and wonders, how many way are there to put a single domino inside of the chosen rectangle?

    Input

    The first line of the input contains two integers h and w (1 ≤ h, w ≤ 500) – the number of rows and the number of columns, respectively.

    The next h lines describe a grid. Each line contains a string of the length w. Each character is either '.' or '#' — denoting an empty or forbidden cell, respectively.

    The next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries.

    Each of the next q lines contains four integers r1ic1ir2ic2i (1 ≤ r1i ≤ r2i ≤ h, 1 ≤ c1i ≤ c2i ≤ w) — the i-th query. Numbers r1i andc1i denote the row and the column (respectively) of the upper left cell of the rectangle. Numbers r2i and c2i denote the row and the column (respectively) of the bottom right cell of the rectangle.

    Output

    Print q integers, i-th should be equal to the number of ways to put a single domino inside the i-th rectangle.

    Sample test(s)
    input
    5 8
    ....#..#
    .#......
    ##.#....
    ##..#.##
    ........
    4
    1 1 2 3
    4 1 4 1
    1 2 4 5
    2 5 5 8
    
    output
    4
    0
    10
    15
    
    input
    7 39
    .......................................
    .###..###..#..###.....###..###..#..###.
    ...#..#.#..#..#.........#..#.#..#..#...
    .###..#.#..#..###.....###..#.#..#..###.
    .#....#.#..#....#.....#....#.#..#..#.#.
    .###..###..#..###.....###..###..#..###.
    .......................................
    6
    1 1 3 20
    2 10 6 30
    2 10 7 30
    2 2 7 7
    1 7 7 7
    1 8 7 8
    
    output
    53
    89
    120
    23
    0
    2
    
    Note

    A red frame below corresponds to the first query of the first sample. A domino can be placed in 4 possible ways.



    题目链接:点击打开链接

    给出一个由'*' '.'构成的图, 进行q次询问, 每次询问给出两个点, 问这两个点间有多少'.'连在一块, 上下或者左右代表连在一块.

    用两个dp数组保存结果, 1个记录左右的'.', 1个记录上下的'.', 每次询问通过两数组计算相邻的'.'就可以.

    AC代码:

    #include "iostream"
    #include "cstdio"
    #include "cstring"
    #include "algorithm"
    #include "queue"
    #include "stack"
    #include "cmath"
    #include "utility"
    #include "map"
    #include "set"
    #include "vector"
    #include "list"
    #include "string"
    #include "cstdlib"
    using namespace std;
    typedef long long ll;
    const int MOD = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    const int MAXN = 505;
    char maze[MAXN][MAXN];
    int h, w, q, dp1[MAXN][MAXN], dp2[MAXN][MAXN];
    int main(int argc, char const *argv[])
    {
    	scanf("%d%d", &h, &w);
    	for(int i = 1; i <= h; ++i) {
    		scanf("%s", maze[i] + 1);
    		for(int j = 1; j <= w; ++j) {
    			if(maze[i][j] == '.' && maze[i - 1][j] == '.') dp1[i][j]++;
    			if(maze[i][j] == '.' && maze[i][j - 1] == '.') dp2[i][j]++;
    			dp1[i][j] += dp1[i - 1][j] + dp1[i][j - 1] - dp1[i - 1][j - 1];
    			dp2[i][j] += dp2[i - 1][j] + dp2[i][j - 1] - dp2[i - 1][j - 1];
    		}
    	}
    	scanf("%d", &q);
    	while(q--) {
    		int x1, y1, x2, y2;
    		scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
    		printf("%d
    ", dp1[x1][y1 - 1] + dp1[x2][y2] - dp1[x1][y2] - dp1[x2][y1 - 1] 
    			+ dp2[x1 - 1][y1] + dp2[x2][y2] - dp2[x2][y1] - dp2[x1 - 1][y2]);
    	}
    	return 0;
    }


  • 相关阅读:
    课程5:Spring框架2016版视频--视频列表目录
    TAQSkinScrollBar 类美化滚动条再讨论
    C#区分多态和重载-delphi也类似
    Delphi之静态方法,虚方法virtual,动态dynamic,抽象abstract,消息
    课程4:黑马程序员_spring2.5视频教程--视频列表
    在 Delphi 中判断一个字符是中文的方法
    salesforce 零基础学习(四十八)自定义列表分页之Pagination基类封装 ※※※
    salesforce 零基础学习(四十七) 数据加密简单介绍
    salesforce 零基础学习(四十六)动态美观显示列表中记录的审批状态
    salesforce 零基础学习(四十五)Approval Lock & UnLock相关注意事项
  • 原文地址:https://www.cnblogs.com/wgwyanfs/p/7076815.html
Copyright © 2011-2022 走看看