zoukankan      html  css  js  c++  java
  • HDU 1102 Constructing Roads

    Constructing Roads

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5227    Accepted Submission(s): 1896


    Problem Description
    There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected. 

    We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
     
    Input
    The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

    Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
     
    Output
    You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 
     
    Sample Input
    
    
    3 0 990 692 990 0 179 692 179 0 1 1 2
     
    Sample Output
    
    
    179
     

    很简单的最小生成树,有两种做法,我采用Kruskal和Prim都试了一下。一种是使已经有的边距离为0,这样既能顺利地生成,又能不影响答案;第二种是合并已经有的两条边的集合。我这里kruskal采用的是第二种方法,Prim只能用第一种方法。

    Kruskal Algorithm Code:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    #define N 107
    
    int mp[N][N],fa[N],vis[N][N],n,res;
    
    struct Edge
    {
        int s,t,w;
    }edge[N*N];
    
    int cmp(Edge ka,Edge kb)
    {
        return ka.w < kb.w;
    }
    
    int findset(int x)
    {
        if(x != fa[x])
            fa[x] = findset(fa[x]);
        return fa[x];
    }
    
    void Kruskal()
    {
        int i,j,k = 0,q,A,B;
        for(i=1;i<=n;i++)
        {
            for(j=i+1;j<=n;j++)
            {
                edge[k].s = i;
                edge[k].t = j;
                edge[k].w = mp[i][j];
                k++;
            }
        }
        sort(edge,edge+k,cmp);
        for(i=1;i<=n;i++)
            fa[i] = i;
        res = 0;
        scanf("%d",&q);
        for(i=0;i<q;i++)
        {
            scanf("%d%d",&A,&B);
            int u = findset(A);
            int v = findset(B);
            fa[u] = v;
        }
        for(i=0;i<k;i++)
        {
            int u = edge[i].s;
            int v = edge[i].t;
            int fx = findset(u);
            int fy = findset(v);
            if(fx != fy)
            {
                res += edge[i].w;
                fa[fx] =fy;
            }
        }
    }
    
    int main()
    {
        int i,j;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    scanf("%d",&mp[i][j]);
            Kruskal();
            printf("%d
    ",res);
        }
        return 0;
    }
    View Code

    Prim Algorithm Code:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #define Mod 1000000007
    using namespace std;
    #define N 107
    
    int mp[N][N],vis[N],n,res,len[N];
    
    void Prim()
    {
        int i,j,k,mini;
        res = 0;
        memset(vis,0,sizeof(vis));
        for(i=1;i<=n;i++)
            len[i] = mp[1][i];
        len[1] = 0;
        vis[1] = 1;
        for(i=1;i<=n;i++)
        {
            mini = Mod;
            for(j=1;j<=n;j++)
            {
                if(!vis[j] && len[j] < mini)
                {
                    mini = len[j];
                    k = j;
                }
            }
            if(mini == Mod)
                return;
            res += len[k];
            vis[k] = 1;
            for(j=1;j<=n;j++)
            {
                if(!vis[j] && len[j] > mp[k][j])
                    len[j] = mp[k][j];
            }
        }
    }
    int main()
    {
        int i,j,q,u,v;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=1;i<=n;i++)
                for(j=1;j<=n;j++)
                    scanf("%d",&mp[i][j]);
            scanf("%d",&q);
            while(q--)
            {
                scanf("%d%d",&u,&v);
                mp[u][v] = mp[v][u] = 0;
            }
            Prim();
            printf("%d
    ",res);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    krpano--控制热点跳转到场景的指定视角
    bzoj 4237: 稻草人 -- CDQ分治
    bzoj 4176: Lucas的数论 -- 杜教筛,莫比乌斯反演
    bzoj 3545/3551: [ONTAK2010]Peaks -- 主席树,最小生成树,倍增
    bzoj 4627: [BeiJing2016]回转寿司 -- 权值线段树
    bzoj 1901: Zju2112 Dynamic Rankings -- 主席树,树状数组,哈希
    bzoj 3252: 攻略 -- 长链剖分+贪心
    bzoj 5055: 膜法师 -- 树状数组
    bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)
    bzoj 1176: [Balkan2007]Mokia&&2683: 简单题 -- cdq分治
  • 原文地址:https://www.cnblogs.com/whatbeg/p/3626119.html
Copyright © 2011-2022 走看看