zoukankan      html  css  js  c++  java
  • POJ 1410 Intersection --几何,线段相交

    题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内。

    解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可。这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单纯做了两次跨立实验,在下图这种情况是错误的:

    这样的话线段与右边界的两次跨立实验(叉积<=0)都会通过,但是并不相交。

    所以要加快速排斥。

    还有就是这题题目说给出的不一定是左上角,右下角依次的顺序。所以干脆重新自己定义左上角,右下角。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #define eps 1e-8
    using namespace std;
    #define N 100017
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0):x(x),y(y) {}
        void input() { scanf("%lf%lf",&x,&y); }
    };
    typedef Point Vector;
    struct Circle{
        Point c;
        double r;
        Circle(){}
        Circle(Point c,double r):c(c),r(r) {}
        Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
        void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
    };
    struct Line{
        Point p;
        Vector v;
        double ang;
        Line(){}
        Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
        Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
        bool operator < (const Line &L)const { return ang < L.ang; }
    };
    int dcmp(double x) {
        if(x < -eps) return -1;
        if(x > eps) return 1;
        return 0;
    }
    template <class T> T sqr(T x) { return x * x;}
    Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
    bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
    bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
    bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
    bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
    double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
    double Length(Vector A) { return sqrt(Dot(A, A)); }
    double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
    Vector VectorUnit(Vector x){ return x / Length(x);}
    Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
    double angle(Vector v) { return atan2(v.y, v.x); }
    
    bool SegmentIntersection(Point A,Point B,Point C,Point D) {
        return max(A.x,B.x) >= min(C.x,D.x) &&
               max(C.x,D.x) >= min(A.x,B.x) &&
               max(A.y,B.y) >= min(C.y,D.y) &&
               max(C.y,D.y) >= min(A.y,B.y) &&
               dcmp(Cross(C-A,B-A)*Cross(D-A,B-A)) <= 0 &&
               dcmp(Cross(A-C,D-C)*Cross(B-C,D-C)) <= 0;
    }
    
    //data segment
    struct node{
        Point P[2];
    }line[206];
    //data ends
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            double x1,y1,x2,y2;
            double xleft,ytop,xright,ybottom;
            Point A,B;
            A.input(), B.input();
            scanf("%lf%lf%lf%lf",&xleft,&ytop,&xright,&ybottom);
            Point P1,P2,P3,P4;
            double XL = min(xleft,xright);
            double XR = max(xleft,xright);
            double YB = min(ybottom,ytop);
            double YT = max(ybottom,ytop);
            xleft = XL, xright = XR, ybottom = YB, ytop = YT;
            P1 = Point(xleft,ytop);
            P2 = Point(xleft,ybottom);
            P3 = Point(xright,ytop);
            P4 = Point(xright,ybottom);
            int flag = 0;
            if(SegmentIntersection(A,B,P1,P3) || SegmentIntersection(A,B,P1,P2) || SegmentIntersection(A,B,P2,P4) || SegmentIntersection(A,B,P3,P4))
                flag = 1;
            if(dcmp(A.x-xleft) >= 0 && dcmp(A.x-xright) <= 0 && dcmp(A.y-ytop) <= 0 && dcmp(A.y-ybottom) >= 0 && dcmp(B.x-xleft) >= 0 && dcmp(B.x-xright) <= 0 && dcmp(B.y-ytop) <= 0 && dcmp(B.y-ybottom) >= 0)
                flag = 1;
            if(flag) puts("T");
            else     puts("F");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Cocos Creator代码编辑环境配置
    CocosCreator编辑器界面
    Colored Sticks (并查集+Trie + 欧拉路)
    子序列 NYOJ (尺取法+队列+hash) (尺取法+离散化)
    相同的雪花 Hash
    F
    逆序数
    士兵杀敌5 前缀数组
    Color the ball 线段树 区间更新但点查询
    士兵杀敌(二) 线段树
  • 原文地址:https://www.cnblogs.com/whatbeg/p/4109222.html
Copyright © 2011-2022 走看看