zoukankan      html  css  js  c++  java
  • manifold tangent classifier

    The Manifold Tangent Classifier (MTC) Putting it all together, here is the high level summary of how we build and train a deep network:

    1. Train (unsupervised) a stack of K CAE+H layers (Eq. 4). Each is trained in turn on the representation learned by the previous layer.

    2. For each xi ∈ D compute the Jacobian of the last layer representation J (K) (xi) = ∂h(K) ∂x (xi) and its SVD1 . Store the leading dM singular vectors in set Bxi .

    3. On top of the K pre-trained layers, stack an output layer of size the number of classes. Finetune the whole network for supervised classification2 with an added tangent propagation penalty (Eq. 6), using for each xi , tangent directions Bxi .

    We call this deep learning algorithm the Manifold Tangent Classifier (MTC). Alternatively, instead of step 3, one can use the tangent vectors in Bxi in a tangent distance nearest neighbors classifier.

    --written by Salah Rifai

  • 相关阅读:
    羊车门悖论
    python--程序语言中的我行我素者
    最大流isap
    约瑟夫环问题
    CF 916 一言题解
    ZJOI2006 书架
    板子
    windows激活流程
    Ant Design 坑
    js+jQuery判断一个点是否在多边形中
  • 原文地址:https://www.cnblogs.com/whatyouknow123/p/6735336.html
Copyright © 2011-2022 走看看