zoukankan      html  css  js  c++  java
  • manifold tangent classifier

    The Manifold Tangent Classifier (MTC) Putting it all together, here is the high level summary of how we build and train a deep network:

    1. Train (unsupervised) a stack of K CAE+H layers (Eq. 4). Each is trained in turn on the representation learned by the previous layer.

    2. For each xi ∈ D compute the Jacobian of the last layer representation J (K) (xi) = ∂h(K) ∂x (xi) and its SVD1 . Store the leading dM singular vectors in set Bxi .

    3. On top of the K pre-trained layers, stack an output layer of size the number of classes. Finetune the whole network for supervised classification2 with an added tangent propagation penalty (Eq. 6), using for each xi , tangent directions Bxi .

    We call this deep learning algorithm the Manifold Tangent Classifier (MTC). Alternatively, instead of step 3, one can use the tangent vectors in Bxi in a tangent distance nearest neighbors classifier.

    --written by Salah Rifai

  • 相关阅读:
    8 网站用户密码保存
    10 XSRF和XSS
    评分预测
    社会化推荐
    借助上下文信息
    UGC
    冷启动
    Git秘籍:在 Git 中进行版本回退
    Google在三大系统上停止对Chrome Apps的支持
    Windows 的 AD 域寄生于 Linux 机器
  • 原文地址:https://www.cnblogs.com/whatyouknow123/p/6735336.html
Copyright © 2011-2022 走看看