zoukankan      html  css  js  c++  java
  • 三.Flink实时项目电商用户行为分析之市场营销商业指标统计分析

    1.1 模块创建和数据准备

    继续在Flink-Project下新建一个 maven module作为子项目,命名为gmall-market

    这个模块中我们没有现成的数据,所以会用自定义的测试源来产生测试数据流,或者直接用生成测试数据文件。

    1.2 APP市场推广统计

    随着智能手机的普及,在如今的电商网站中已经有越来越多的用户来自移动端,相比起传统浏览器的登录方式,手机APP成为了更多用户访问电商网站的首选。对于电商企业来说,一般会通过各种不同的渠道对自己的APP进行市场推广,而这些渠道的统计数据(比如,不同网站上广告链接的点击量、APP下载量)就成了市场营销的重要商业指标。

    首先我们考察分渠道的市场推广统计。由于没有现成的数据,所以我们需要自定义一个测试源来生成用户行为的事件流。

    1.2.1 自定义测试数据源

    定义一个源数据的javaBean类MarketUserBehavior,再定义一个SourceFunction,用于产生用户行为源数据:

    1)定义JavaBean--MarketUserBehavior

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public class MarketUserBehavior {
        // 属性:用户ID,用户行为,推广渠道,时间戳
        private Long userId;
        private String behavior;
        private String channel;
        private Long timestamp;
    }

    2)自定义数据源

    public class MarketBehaviorSource implements ParallelSourceFunction<MarketUserBehavior> {
    //是否运行的标识位
    private Boolean running=true;
    //定义用户行为和推广渠道的集合
    private List<String> behaviorList= Arrays.asList("CLICK", "DOWNLOAD", "INSTALL", "UNINSTALL");
    private List<String> channelList=Arrays.asList("app store", "wechat", "weibo", "tieba");
    //定义随机数发生器
    private Random random=new Random();

    @Override
    public void run(SourceContext<MarketUserBehavior> ctx) throws Exception {
    while (running){
    //随机生成所有字段
    long id = random.nextLong();
    String behavior = behaviorList.get(random.nextInt(behaviorList.size()));
    String channel = channelList.get(random.nextInt(channelList.size()));
    long timestamp = System.currentTimeMillis();
    //发出数据
    ctx.collect(new MarketUserBehavior(id,behavior,channel,timestamp) );
    Thread.sleep(100L);

    }
    }

    @Override
    public void cancel() {
    running=false;
    }
    }

    1.2.2 分渠道统计

    每隔5秒钟统计最近一个小时按照渠道的推广量。

    1)定义JavaBean--ChannelBehaviorCount

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public class ChannelBehaviorCount {
        private String channel;
        private String behavior;
        private String windowEnd;
        private Long count;
    }

    2)主类程序

    public class MarketByChannelApp {
    public static void main(String[] args) throws Exception {
    //1.创建环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    env.setParallelism(1);
    //2.读取自定义数据源数据
    DataStreamSource<MarketUserBehavior> marketUserDS = env.addSource(new MarketBehaviorSource());

    //3.过滤卸载数据,按照渠道和行为做分组,开窗
    SingleOutputStreamOperator<ChannelBehaviorCount> result = marketUserDS.filter(data -> "UNINSTALL".equals(data.getBehavior()))
    .keyBy("channel", "behavior")
    .timeWindow(Time.hours(1), Time.seconds(5))
    .aggregate(new MarketAggFunc(), new MarketWindowFunc());

    //4.打印
    result.print();
    //5.执行任务
    env.execute();
    }

    public static class MarketAggFunc implements AggregateFunction<MarketUserBehavior,Long,Long>{

    @Override
    public Long createAccumulator() {
    return 0L;
    }

    @Override
    public Long add(MarketUserBehavior value, Long accumulator) {
    return accumulator+1L;
    }

    @Override
    public Long getResult(Long accumulator) {
    return accumulator;
    }

    @Override
    public Long merge(Long a, Long b) {
    return a+b;
    }
    }
    public static class MarketWindowFunc implements WindowFunction<Long, ChannelBehaviorCount, Tuple, TimeWindow>{

    @Override
    public void apply(Tuple tuple, TimeWindow window, Iterable<Long> input, Collector<ChannelBehaviorCount> out) throws Exception {
    String channel = tuple.getField(0);
    String behavior = tuple.getField(1);
    String windowEnd = new Timestamp(window.getEnd()).toString();
    Long count = input.iterator().next();
    out.collect(new ChannelBehaviorCount(channel,behavior,windowEnd,count));
    }
    }

    }

    1.2.3 不分渠道(总量)统计

    同样我们还可以考察不分渠道的市场推广统计,这样得到的就是所有渠道推广的总量。

    1.3 页面广告分析

    电商网站的市场营销商业指标中,除了自身的APP推广,还会考虑到页面上的广告投放(包括自己经营的产品和其它网站的广告)。所以广告相关的统计分析,也是市场营销的重要指标。

    对于广告的统计,最简单也最重要的就是页面广告的点击量,网站往往需要根据广告点击量来制定定价策略和调整推广方式,而且也可以借此收集用户的偏好信息。更加具体的应用是,我们可以根据用户的地理位置进行划分,从而总结出不同省份用户对不同广告的偏好,这样更有助于广告的精准投放。

    1.3.1 页面广告点击量统计

    接下来我们就进行页面广告按照省份划分的点击量的统计。

    同样由于没有现成的数据,我们定义一些测试数据,放在AdClickLog.csv中,用来生成用户点击广告行为的事件流。

    在代码中我们首先定义源数据的javaBean类AdClickEvent,以及输出统计数据的javaBean类AdCountByProvince。主函数中先以province进行keyBy,然后开一小时的时间窗口,滑动距离为5秒,统计窗口内的点击事件数量。具体代码实现如下

    1JavaBean--AdClickEvent

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public class AdClickEvent {
        private Long userId;
        private Long adId;
        private String province;
        private String city;
        private Long timestamp;
    }

    2JavaBean—AdCountByProvince

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public class AdCountByProvince {
        private String province;
        private String windowEnd;
        private Long count;
    }

    3)主程序

    public class AdStatisticsByProvince {

        public static void main(String[] args) throws Exception {

            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
            env.setParallelism(1);

            // 读取数据
            DataStream<AdClickEvent> adClickEventStream = env.readTextFile("input/AdClickLog.csv")
                    .map(data -> {
                        String[] fields = data.split(",");
                        return new AdClickEvent(new Long(fields[0]), new Long(fields[1]), fields[2], fields[3], new Long(fields[4]));
                    })
                    .assignTimestampsAndWatermarks(new AscendingTimestampExtractor<AdClickEvent>() {
                        @Override
                        public long extractAscendingTimestamp(AdClickEvent element) {
                            return element.getTimestamp() * 1000L;
                        }
                    });

            // 根据province分组,开窗聚合统计
            DataStream<AdCountByProvince> adCountStream = adClickEventStream
                    .keyBy(AdClickEvent::getProvince)
                    .timeWindow(Time.hours(1), Time.seconds(5))
                    .aggregate(new AdCountAgg(), new AdCountResult());

            adCountStream.print();

            env.execute("ad statistics job");
        }
        // 实现自定义的增量聚合函数
        public static class AdCountAgg implements AggregateFunction<AdClickEvent, Long, Long> {
            @Override
            public Long createAccumulator() {
                return 0L;
            }

            @Override
            public Long add(AdClickEvent value, Long accumulator) {
                return accumulator + 1;
            }

            @Override
            public Long getResult(Long accumulator) {
                return accumulator;
            }

            @Override
            public Long merge(Long a, Long b) {
                return a + b;
            }
        }

        // 实现自定义的全窗口函数
        public static class AdCountResult implements WindowFunction<Long, AdCountByProvince, String, TimeWindow> {
            @Override
            public void apply(String province, TimeWindow window, Iterable<Long> input, Collector<AdCountByProvince> out) throws Exception {
                out.collect(new AdCountByProvince(province, new Timestamp(window.getEnd()).toString(), input.iterator().next()));
            }
        }
    }

    1.3.2 黑名单过滤

    上节我们进行的点击量统计,同一用户的重复点击是会叠加计算的。在实际场景中,同一用户确实可能反复点开同一个广告,这也说明了用户对广告更大的兴趣;但是如果用户在一段时间非常频繁地点击广告,这显然不是一个正常行为,有刷点击量的嫌疑。所以我们可以对一段时间内(比如一天内)的用户点击行为进行约束,如果对同一个广告点击超过一定限额(比如100次),应该把该用户加入黑名单并报警,此后其点击行为不应该再统计.

    具体代码实现如下:

    1JavaBean—BlackListWarning

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public class BlackListWarning {
        private Long userId;
        private Long adId;
        private String warningMsg;
    }

     2)主程序

     public class AdClickByProvinceApp {
    public static void main(String[] args) throws Exception {
    //1.创建环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    env.setParallelism(1);
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
    //2.读取文本数据创建流转换位javaBean
    SingleOutputStreamOperator<AdClickEvent> adClickDS = env.readTextFile("input/dClickLog.csv")
    .map(line -> {
    String[] fields = line.split(",");
    return new AdClickEvent(Long.parseLong(fields[0]),
    Long.parseLong(fields[1]),
    fields[2],
    fields[3],
    Long.parseLong(fields[4]));
    }).assignTimestampsAndWatermarks(new AscendingTimestampExtractor<AdClickEvent>() {
    @Override
    public long extractAscendingTimestamp(AdClickEvent element) {
    return element.getTimestamp() * 1000L;
    }
    });
    //3.根据点击量进行数据数据过滤(单日某个用户点击某个广告超过100,则加入黑名单)
    SingleOutputStreamOperator<AdClickEvent> filterByClickCount = adClickDS.
    keyBy("userId", "adId")
    .process(new AdClickKeyProcessFunc(100L));
    //4.按照省份分组,开窗,计算各个省份广告点击总数
    SingleOutputStreamOperator<AdCountByProvince> result = filterByClickCount.keyBy(data -> data.getProvince())
    .timeWindow(Time.hours(1), Time.seconds(5))
    .aggregate(new AdClickAgg(), new AdClickWindowFunc());
    //5.获取侧输出流
    DataStream<BlackListWarning> sideOutput = filterByClickCount.getSideOutput(new OutputTag<BlackListWarning>("OutputTag") {
    });
    //6.打印
    result.print();
    sideOutput.print("sideOutput");
    //7.启动任务
    env.execute();

    }

    public static class AdClickAgg implements AggregateFunction<AdClickEvent,Long,Long>{

    @Override
    public Long createAccumulator() {
    return 0L;
    }

    @Override
    public Long add(AdClickEvent value, Long accumulator) {
    return accumulator + 1L;
    }

    @Override
    public Long getResult(Long accumulator) {
    return accumulator;
    }

    @Override
    public Long merge(Long a, Long b) {
    return a+b;
    }
    }
    public static class AdClickWindowFunc implements WindowFunction<Long, AdCountByProvince,String, TimeWindow>{

    @Override
    public void apply(String province, TimeWindow window, Iterable<Long> input, Collector<AdCountByProvince> out) throws Exception {
    String windowEnd = new Timestamp(window.getEnd()).toString();
    Long count = input.iterator().next();
    out.collect(new AdCountByProvince(province,windowEnd,count));
    }
    }
    public static class AdClickKeyProcessFunc extends KeyedProcessFunction<Tuple,AdClickEvent,AdClickEvent>{
    //定义单日单人点击某个广告上界
    private Long maxClick;

    public AdClickKeyProcessFunc() {
    }

    public AdClickKeyProcessFunc(Long maxClick) {
    this.maxClick = maxClick;
    }

     // 定义状态,保存当前用户对某一广告的点击次数
    private ValueState<Long> countState;

      // 定义状态,用来标记当前用户和广告ID是否已经发送到黑名单
    private ValueState<Boolean> isBlackList;

    @Override
    public void open(Configuration parameters) throws Exception {
    countState= getRuntimeContext().getState(new ValueStateDescriptor<Long>("count-state",Long.class));
    isBlackList=getRuntimeContext().getState(new ValueStateDescriptor<Boolean>("is-black-list",Boolean.class));
    }

    @Override
    public void processElement(AdClickEvent value, Context ctx, Collector<AdClickEvent> out) throws Exception {
    //获取状态中的数据
    Long count = countState.value();
    //判断是否是第一条数据
    if(count == null){
    //如果是第一条数据
    countState.update(1L);
    //定义定时器,注册定时,每天0点用于清空状态
    // value.getTimestamp用的是东八时区,flink默认的是零时区
    //东八比零时区早,所以我们要减8小时,即回到零时区
    Long ts=(value.getTimestamp()/(60 * 60 * 24)+1)*(24 * 60 * 60 * 1000L) - (8 * 60 * 60 * 1000L);
    System.out.println(new Timestamp(ts));
    ctx.timerService().registerEventTimeTimer(ts);
    }else{
    //如果不是第一条数据,更新状态为之前的数据+1
    long curClickCount=count + 1L ;
    countState.update(curClickCount);
    if(curClickCount>=maxClick){
    //判断是否已经被拉黑
    if(isBlackList.value()==null){
    //超过单日点击次数,将数据输出到侧输出流
    ctx.output(new OutputTag<BlackListWarning>("output"){},new BlackListWarning(value.getUserId(),value.getAdId(),"点击次数超过"+maxClick+"! "));
    //更新状态为true
    isBlackList.update(true);
    }
    return;
    }
    }
    //将数据写入主流
    out.collect(value);

    }

    @Override
    public void onTimer(long timestamp, OnTimerContext ctx, Collector<AdClickEvent> out) throws Exception {
    countState.clear();
    isBlackList.clear();
    }
    }

    }

     

     

     

  • 相关阅读:
    陆金所的8.61%是怎么算出来的
    自已开发完美的触摸屏网页版仿app弹窗型滚动列表选择器/日期选择器
    JavaScript移除绑定在元素上的匿名事件处理函数
    JavaScript : 零基础打造自己的jquery类库
    自定义右键菜单
    移动端拖拽(模块化开发,触摸事件,webpack)
    读书笔记--对象、实例、原型、继承
    JavaScript的Object的一些静态方法(*************************************************************)
    CSS3模拟IOS滑动开关
    lnrfvnhjttpvvlj
  • 原文地址:https://www.cnblogs.com/whdd/p/14058617.html
Copyright © 2011-2022 走看看