zoukankan      html  css  js  c++  java
  • [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 
      Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.
     
    Input
    Input a length L (0 <= L <= 10 6) and M.
     
    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
     
    Sample Input
    3 8 4 7 4 8
     
    Sample Output
    6 2 1
     
    题意:L个人排队,求不含fmf, fff这两种组合的总组合数对M求余的结果。
    思路:用后向前看,f(n)为第n个人的取法总和:
       1.第n位为m  则前面的可以任意取 即为f(n-1)种取法
       2.第n位为f  第n-1位为f  则第n-2位只能是m  第n-3位也只能是m  第n-4位就可以任意取了  即为f(n-4)种取法
          3.第n位为f  第n-1位为m  则第n-2位只能为m  第n-3位就可以任意取  即为f(n-3)种取法
       可得出递推关系式:f(n) = f(n-1) + f(n-3) + f(n-4)
       可以直接用递推求解,不过差点超时,递推可以转化为矩阵的乘法
              

    直接递推:

    #include <iostream>
    #include <stdio.h>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    int L, M;
    
    int solve()
    {
        int a[1000010];
        a[0] = 1; a[1] = 2;
        a[2] = 4; a[3] = 6;
        for (int i = 4; i <= L; i++) {
            a[i] = a[i-1]+a[i-3]+a[i-4];
            a[i] %= M;
        }
        return a[L];
    }
    
    int main()
    {
        //freopen("1.txt", "r", stdin);
        while (~scanf("%d%d", &L, &M)) {
            printf("%d
    ", solve());
        }
    
    
    
        return 0;
    }

    矩阵快速幂

    #include <iostream>
    #include <cstring>
    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    using namespace std;
    #define LL long long
    const int Max = 4;
    int L, M;
    struct Mat
    {
        LL m[Max][Max];
    
        void clear() {
            memset(m, 0, sizeof(m));
        }
        
        void Init() {
            clear();
            for (int i = 0; i < Max; i++) 
                m[i][i] = 1;
        }
        
    };
    
    Mat operator * (Mat a, Mat b) 
    {
        Mat c;
        c.clear();
        for (int i = 0; i < Max; i++)
            for (int j = 0; j < Max; j++)
                for (int k = 0; k < Max; k++) {
                    c.m[i][j] += (a.m[i][k]*b.m[k][j])%M;
                    c.m[i][j] %= M;
                }
        return c;
    }
    
    Mat quickpow(Mat a, int k)
    {
        Mat ret;
        ret.Init();
        while (k) {
            if (k & 1) 
                ret = ret*a;
            a = a*a;
            k >>= 1;
        }
        return ret;
    }
    
    int main()
    {    
        //freopen("1.txt", "r", stdin);
        Mat a, b, c;
        a.clear(); b.clear(); c.clear();
        a.m[0][0] = 9; a.m[1][0] = 6;
        a.m[2][0] = 4; a.m[3][0] = 2;
    
        b.m[0][0] = b.m[0][2] = b.m[0][3] =
        b.m[1][0] = b.m[2][1] = b.m[3][2] = 1;
    
        while (~scanf("%d%d", &L, &M)) {
            LL ret;
            if (L == 0)
                ret = 0;
            else if (L <= 4)
                ret = a.m[4-L][0]%M;
            else {
                c = quickpow(b, L-4);
                c = c*a;
                ret = c.m[0][0]%M;
            }
            printf("%lld
    ", ret);
        }
    
    
        return 0;
    }
  • 相关阅读:
    MVC框架理解及优缺点
    ThinkPHP 小于5.0.24 远程代码执行高危漏洞 修复方案
    Nginx负载均衡配置与负载策略
    【高级】PHPFPM和Nginx的通信机制
    浅谈Facebook的服务器架构(组图) 狼人:
    【观点】什么是REST? 狼人:
    10款对开发者有用的Android应用 狼人:
    【书摘】Linux内核编程 狼人:
    6款强大的jQuery插件 创建和加强网站布局 狼人:
    【评论】是什么造就了伟大的程序员? 狼人:
  • 原文地址:https://www.cnblogs.com/whileskies/p/7284165.html
Copyright © 2011-2022 走看看