zoukankan      html  css  js  c++  java
  • [hdu 2604] Queuing 递推 矩阵快速幂

    Problem Description
    Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 
      Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
    Your task is to calculate the number of E-queues mod M with length L by writing a program.
     
    Input
    Input a length L (0 <= L <= 10 6) and M.
     
    Output
    Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
     
    Sample Input
    3 8 4 7 4 8
     
    Sample Output
    6 2 1
     
    题意:L个人排队,求不含fmf, fff这两种组合的总组合数对M求余的结果。
    思路:用后向前看,f(n)为第n个人的取法总和:
       1.第n位为m  则前面的可以任意取 即为f(n-1)种取法
       2.第n位为f  第n-1位为f  则第n-2位只能是m  第n-3位也只能是m  第n-4位就可以任意取了  即为f(n-4)种取法
          3.第n位为f  第n-1位为m  则第n-2位只能为m  第n-3位就可以任意取  即为f(n-3)种取法
       可得出递推关系式:f(n) = f(n-1) + f(n-3) + f(n-4)
       可以直接用递推求解,不过差点超时,递推可以转化为矩阵的乘法
              

    直接递推:

    #include <iostream>
    #include <stdio.h>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    int L, M;
    
    int solve()
    {
        int a[1000010];
        a[0] = 1; a[1] = 2;
        a[2] = 4; a[3] = 6;
        for (int i = 4; i <= L; i++) {
            a[i] = a[i-1]+a[i-3]+a[i-4];
            a[i] %= M;
        }
        return a[L];
    }
    
    int main()
    {
        //freopen("1.txt", "r", stdin);
        while (~scanf("%d%d", &L, &M)) {
            printf("%d
    ", solve());
        }
    
    
    
        return 0;
    }

    矩阵快速幂

    #include <iostream>
    #include <cstring>
    #include <stdio.h>
    #include <algorithm>
    #include <math.h>
    using namespace std;
    #define LL long long
    const int Max = 4;
    int L, M;
    struct Mat
    {
        LL m[Max][Max];
    
        void clear() {
            memset(m, 0, sizeof(m));
        }
        
        void Init() {
            clear();
            for (int i = 0; i < Max; i++) 
                m[i][i] = 1;
        }
        
    };
    
    Mat operator * (Mat a, Mat b) 
    {
        Mat c;
        c.clear();
        for (int i = 0; i < Max; i++)
            for (int j = 0; j < Max; j++)
                for (int k = 0; k < Max; k++) {
                    c.m[i][j] += (a.m[i][k]*b.m[k][j])%M;
                    c.m[i][j] %= M;
                }
        return c;
    }
    
    Mat quickpow(Mat a, int k)
    {
        Mat ret;
        ret.Init();
        while (k) {
            if (k & 1) 
                ret = ret*a;
            a = a*a;
            k >>= 1;
        }
        return ret;
    }
    
    int main()
    {    
        //freopen("1.txt", "r", stdin);
        Mat a, b, c;
        a.clear(); b.clear(); c.clear();
        a.m[0][0] = 9; a.m[1][0] = 6;
        a.m[2][0] = 4; a.m[3][0] = 2;
    
        b.m[0][0] = b.m[0][2] = b.m[0][3] =
        b.m[1][0] = b.m[2][1] = b.m[3][2] = 1;
    
        while (~scanf("%d%d", &L, &M)) {
            LL ret;
            if (L == 0)
                ret = 0;
            else if (L <= 4)
                ret = a.m[4-L][0]%M;
            else {
                c = quickpow(b, L-4);
                c = c*a;
                ret = c.m[0][0]%M;
            }
            printf("%lld
    ", ret);
        }
    
    
        return 0;
    }
  • 相关阅读:
    自学数据分析书单2
    自学的数据分析书单
    @RequestBody, @ResponseBody 注解详解(转)
    @RequestParam @RequestBody @PathVariable 等参数绑定注解详解(转)
    @RequestMapping 用法详解之地址映射(转)
    关于java属性字段命名
    jQuery对象和DOM对象使用说明
    UAP开发错误之The given System.Uri cannot be converted into a Windows.Foundation.Uri(windows phone背景更换)
    Windows Azure之Mobile Service
    .NET重思(二)接口和抽象类的取舍
  • 原文地址:https://www.cnblogs.com/whileskies/p/7284165.html
Copyright © 2011-2022 走看看