vector(向量):
C++中的一种数据结构,确切的说是一个类.它相当于一个动态的数组,当程序员无法知道自己需要的数组的规模多大时,用其来解决问题可以达到最大节约空间的目的.
用法:
文件包含: 首先在程序开头处加上#include以包含所需要的类文件vector 还有一定要加上using namespace std;
变量声明:
例:声明一个int向量以替代一维的数组:vector a;(等于声明了一个int数组a[],大小没有指定,可以动态的向里面添加删除)。
例:用vector代替二维数组.其实只要声明一个一维数组向量即可,而一个数组的名字其实代表的是它的首地址,所以只要声明一个地址的向量即可,即:vector a.同理想用向量代替三维数组也是一样,vector <int**>a;再往上面依此类推.
具体的用法以及函数调用:
如何得到向量中的元素?其用法和数组一样:
例如: vector a int b = 5; a.push_back(b);//该函数下面有详解 cout<<a[0]; //输出结果为5
1.push_back 在数组的最后添加一个数据
2.pop_back 去掉数组的最后一个数据
3.at 得到编号位置的数据
4.begin 得到数组头的指针
5.end 得到数组的最后一个单元+1的指针
特别提示:这里有begin()与end()函数、front()与back()的差别
6.front 得到数组头的引用
7.back 得到数组的最后一个单元的引用
8.max_size 得到vector最大可以是多大
9.capacity 当前vector分配的大小
10.size 当前使用数据的大小
11.resize 改变当前使用数据的大小,如果它比当前使用的大,者填充默认值
12.reserve 改变当前vecotr所分配空间的大小
13.erase 删除指针指向的数据项
14.clear 清空当前的vector
15.rbegin 将vector反转后的开始指针返回(其实就是原来的end-1)
16.rend 将vector反转构的结束指针返回(其实就是原来的begin-1)
17.empty 判断vector是否为空
18.swap 与另一个vector交换数据
详细的函数实现功能:
vector c. c.clear() 移除容器中所有数据。
c.empty() 判断容器是否为空。
c.erase(pos) 删除pos位置的数据
c.erase(beg,end) 删除[beg,end)区间的数据
c.front() 传回第一个数据。
c.insert(pos,elem) 在pos位置插入一个elem拷贝
c.pop_back() 删除最后一个数据。
c.push_back(elem) 在尾部加入一个数据。
c.resize(num) 重新设置该容器的大小
c.size() 回容器中实际数据的个数。
c.begin() 返回指向容器第一个元素的迭代器
c.end() 返回指向容器最后一个元素的迭代器
特别注意:
使用vector需要注意以下几点:
1、如果你要表示的向量长度较长(需要为向量内部保存很多数),容易导致内存泄漏,而且效率会很低;
2、Vector作为函数的参数或者返回值时,需要注意它的写法:
double Distance(vector<int>&a, vector<int>&b) 其中的“&”绝对不能少!!!
3、vector的元素不仅仅可以是int,double,string,还可以是结构体,但是要注意:结构体要定义为全局的,否则会出错。
实例:
vector<int>test; //建立一个vector,int为数组元素的数据类型,test为动态数组名 简单的使用方法如下: vector<int>test;//建立一个vector test.push_back(1); test.push_back(2);//把1和2压入vector,这样test[0]就是1,test[1]就是2
自己见到的实例:
vector<vector<Point2f> > points; //定义一个二维数组 points[0].size(); //指第一行的列数
#include<stdio.h> #include<algorithm> #include<vector> #include<iostream> using namespace std; typedef struct rect { int id; int length; int width; //对于向量元素是结构体的,可在结构体内部定义比较函数,下面按照id,length,width升序排序。 bool operator< (const rect &a) const { if(id!=a.id) return id<a.id; else { if(length!=a.length) return length<a.length; else return width<a.width; } } }Rect; int main() { vector<Rect> vec; Rect rect; rect.id=1; rect.length=2; rect.width=3; vec.push_back(rect); vector<Rect>::iterator it=vec.begin(); cout<<(*it).id<<' '<<(*it).length<<' '<<(*it).width<<endl; return 0; }
算法
(1) 使用reverse将元素翻转:需要头文件#include<algorithm>
reverse(vec.begin(),vec.end());将元素翻转,即逆序排列!
(在vector中,如果一个函数中需要两个迭代器,一般后一个都不包含)
(2)使用sort排序:需要头文件#include<algorithm>,
sort(vec.begin(),vec.end());(默认是按升序排列,即从小到大).
可以通过重写排序比较函数按照降序比较,如下:
定义排序比较函数:
bool Comp(const int &a,const int &b) { return a>b; }
调用时:sort(vec.begin(),vec.end(),Comp),这样就降序排序。
输出Vector的中的元素
vector<float> vecClass;
int nSize = vecClass.size();
//打印vecClass,方法一:
for(int i=0;i<nSize;i++) { cout<<vecClass[i]<<" "; } cout<<endl;
需要注意的是:以方法一进行输出时,数组的下表必须保证是整数。
//打印vecClass,方法二:
for(int i=0;i<nSize;i++) { cout<<vecClass.at(i)<<" "; } cout<<endl;
//打印vecClass,方法三:输出某一指定的数值时不方便
for(vector<float>::iterator it = vecClass.begin();it!=vecClass.end();it++) { cout<<*it<<" "; } cout<<endl;
二维数组的使用:
#include "stdafx.h" #include <cv.h> #include <vector> #include <iostream> using namespace std; int main() { using namespace std; int out[3][2] = { 1, 2, 3, 4, 5, 6 }; vector <int*> v1; v1.push_back(out[0]); v1.push_back(out[1]); v1.push_back(out[2]); cout << v1[0][0] << endl;//1 cout << v1[0][1] << endl;//2 cout << v1[1][0] << endl;//3 cout << v1[1][1] << endl;//4 cout << v1[2][0] << endl;//5 cout << v1[2][1] << endl;//6 return 0; }