zoukankan      html  css  js  c++  java
  • 求一个整数的二进制中1的个数

    算法-求二进制数中1的个数

    问题描述

    任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4

    这也是一道比较经典的题目了,相信不少人面试的时候可能遇到过这道题吧,下面介绍了几种方法来实现这道题,相信很多人可能见过下面的算法,但我相信很少有人见到本文中所有的算法。如果您上头上有更好的算法,或者本文没有提到的算法,请不要吝惜您的代码,分享的时候,也是学习和交流的时候。

    普通法

    我总是习惯叫普通法,因为我实在找不到一个合适的名字来描述它,其实就是最简单的方法,有点程序基础的人都能想得到,那就是移位+计数,很简单,不多说了,直接上代码,这种方法的运算次数与输入n最高位1的位置有关,最多循环32次。

    int BitCount(unsigned int n)
    {
        unsigned int c =0 ; // 计数器
        while (n >0)
        {
            if((n &1) ==1) // 当前位是1
                ++c ; // 计数器加1
            n >>=1 ; // 移位
        }
        return c ;
    }
    

      

    一个更精简的版本如下

    int BitCount(unsigned int n)
    {
        unsigned int c =0 ; // 计数器
        for (c =0; n; n >>=1) // 循环移位
            c += n &1 ; // 如果当前位是1,则计数器加1
        return c ;
    }
    

      

     快速法

    这种方法速度比较快,其运算次数与输入n的大小无关,只与n中1的个数有关。如果n的二进制表示中有k个1,那么这个方法只需要循环k次即可。其原理是不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0,代码如下

    int BitCount(unsigned int n)
    {
        unsigned int c =0 ;
        for (c =0; n; ++c)
        {
            n &= (n -1) ; // 清除最低位的1
        }
        return c ;
    }
    

      

    为什么n &= (n – 1)能清除最右边的1呢?因为从二进制的角度讲,n相当于在n - 1的最低位加上1。举个例子,8(1000)= 7(0111)+ 1(0001),所以8 & 7 = (1000)&(0111)= 0(0000),清除了8最右边的1(其实就是最高位的1,因为8的二进制中只有一个1)。再比如7(0111)= 6(0110)+ 1(0001),所以7 & 6 = (0111)&(0110)= 6(0110),清除了7的二进制表示中最右边的1(也就是最低位的1)。

    分治法

    /* ===========================================================================
    * Problem:
    *   The fastest way to count how many 1s in a 32-bits integer.
    *
    * Algorithm:
    *   The problem equals to calculate the Hamming weight of a 32-bits integer,
    *   or the Hamming distance between a 32-bits integer and 0. In binary cases,
    *   it is also called the population count, or popcount.[1]
    *
    *   The best solution known are based on adding counts in a tree pattern
    *   (divide and conquer). Due to space limit, here is an example for a
    *   8-bits binary number A=01101100:[1]
    * | Expression            | Binary   | Decimal | Comment                    |
    * | A                     | 01101100 |         | the original number        |
    * | B = A & 01010101      | 01000100 | 1,0,1,0 | every other bit from A     |
    * | C = (A>>1) & 01010101 | 00010100 | 0,1,1,0 | remaining bits from A      |
    * | D = B + C             | 01011000 | 1,1,2,0 | # of 1s in each 2-bit of A |
    * | E = D & 00110011      | 00010000 | 1,0     | every other count from D   |
    * | F = (D>>2) & 00110011 | 00010010 | 1,2     | remaining counts from D    |
    * | G = E + F             | 00100010 | 2,2     | # of 1s in each 4-bit of A |
    * | H = G & 00001111      | 00000010 | 2       | every other count from G   |
    * | I = (G>>4) & 00001111 | 00000010 | 2       | remaining counts from G    |
    * | J = H + I             | 00000100 | 4       | No. of 1s in A             |
    * Hence A have 4 1s.
    *
    * [1] http://en.wikipedia.org/wiki/Hamming_weight
    *
    * 这个算法的设计思想用的是二分法,两两一组相加,之后四个四个一组相加,接着八个八个,最后就得到各位之和了。
    * 设原整数值为x,
    * 第一步:把x的32个bit分成16组(第32bit和第31bit一组,第30bit和第29bit一组……以此类推),
    *然后将每一组的两bit上的值(因为是二进制数,所以要么是0要么是1)相加并把结果还放在这两bit的位置上,
    *这样,得到结果整数x1,x1的二进制(32bit)可以分为16组,每一组的数值就是原来整数x在那两bit上1的个数。
    * 第二步:把第一步得到的结果x1的32bit,分成8组(第32、31、30、29bit一组,第28、27、26、25bit一组……以此类推),
    *然后每一组的四bit上的值相加并把结果还放在这四bit的位置上,
    *这样,又得到结果整数x2,x2的二进制可以分为8组,每一组的数值就是原来整数x在那四bit上的1的个数。
    * ……
    * 这样一直分组计算下去,最终,把两个16bit上1的个数相加,得到原来整数x的32bit上1的个数。
     
    ===========================================================================
    */
    #include <stdio.h>
     
    typedef unsigned int UINT32;
    const UINT32 m1  = 0x55555555;  // 01010101010101010101010101010101
    const UINT32 m2  = 0x33333333;  // 00110011001100110011001100110011
    const UINT32 m4  = 0x0f0f0f0f;  // 00001111000011110000111100001111
    const UINT32 m8  = 0x00ff00ff;  // 00000000111111110000000011111111
    const UINT32 m16 = 0x0000ffff;  // 00000000000000001111111111111111
    const UINT32 h01 = 0x01010101;  // the sum of 256 to the power of 0, 1, 2, 3
     
    /* This is a naive implementation, shown for comparison, and to help in
    * understanding the better functions. It uses 20 arithmetic operations
    * (shift, add, and). */
    int popcount_1(UINT32 x)
    {
      x = (x & m1) + ((x >> 1) & m1);
      x = (x & m2) + ((x >> 2) & m2);
      x = (x & m4) + ((x >> 4) & m4);
      x = (x & m8) + ((x >> 8) & m8);
      x = (x & m16) + ((x >> 16) & m16);
      return x;
    }
     
    /* This uses fewer arithmetic operations than any other known implementation
    * on machines with slow multiplication. It uses 15 arithmetic operations. */
    int popcount_2(UINT32 x)
    {
      x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
      x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
      x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
      x += x >> 8;           //put count of each 16 bits into their lowest 8 bits
      x += x >> 16;          //put count of each 32 bits into their lowest 8 bits
      return x & 0x1f;
    }
     
    /* This uses fewer arithmetic operations than any other known implementation
    * on machines with fast multiplication. It uses 12 arithmetic operations,
    * one of which is a multiply. */
    int popcount_3(UINT32 x)
    {
      x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
      x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
      x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
      return (x * h01) >> 24;  // left 8 bits of x + (x<<8) + (x<<16) + (x<<24)
    }
     
    int main()
    {
      int i = 0x1ff12ee2;
      printf("i = %d = 0x%x/n", i, i);
      printf("popcount_1(%d) = %d/n", i, popcount_1(i));
      printf("popcount_2(%d) = %d/n", i, popcount_2(i));
      printf("popcount_3(%d) = %d/n", i, popcount_3(i));
      /* If compiled with other compiler than gcc, comment the line bellow. */
      printf("GCC's  __builtin_popcount(%d) = %d/n", i,  __builtin_popcount(i));
      return 0;
    }
    

      

    查表法

    GCC中提供的内建函数(基于查表法)

    int __builtin_popcount (unsigned int x)

    动态建表

    由于表示在程序运行时动态创建的,所以速度上肯定会慢一些,把这个版本放在这里,有两个原因

    1. 介绍填表的方法,因为这个方法的确很巧妙。

    2. 类型转换,这里不能使用传统的强制转换,而是先取地址再转换成对应的指针类型。也是常用的类型转换方法。

    int BitCount(unsigned int n) 
    { 
        // 建表
        unsigned char BitsSetTable256[256] = {0} ; 
    
        // 初始化表 
        for (int i =0; i <256; i++) 
        { 
            BitsSetTable256[i] = (i &1) + BitsSetTable256[i /2]; 
        } 
    
        unsigned int c =0 ; 
    
        // 查表
        unsigned char* p = (unsigned char*) &n ; 
    
        c = BitsSetTable256[p[0]] + 
            BitsSetTable256[p[1]] + 
            BitsSetTable256[p[2]] + 
            BitsSetTable256[p[3]]; 
    
        return c ; 
    }
    

      

    先说一下填表的原理,根据奇偶性来分析,对于任意一个正整数n

    1.如果它是偶数,那么n的二进制中1的个数与n/2中1的个数是相同的,比如4和2的二进制中都有一个1,6和3的二进制中都有两个1。为啥?因为n是由n/2左移一位而来,而移位并不会增加1的个数。

    2.如果n是奇数,那么n的二进制中1的个数是n/2中1的个数+1,比如7的二进制中有三个1,7/2 = 3的二进制中有两个1。为啥?因为当n是奇数时,n相当于n/2左移一位再加1。

    再说一下查表的原理

    对于任意一个32位无符号整数,将其分割为4部分,每部分8bit,对于这四个部分分别求出1的个数,再累加起来即可。而8bit对应2^8 = 256种01组合方式,这也是为什么表的大小为256的原因。

    注意类型转换的时候,先取到n的地址,然后转换为unsigned char*,这样一个unsigned int(4 bytes)对应四个unsigned char(1 bytes),分别取出来计算即可。举个例子吧,以87654321(十六进制)为例,先写成二进制形式-8bit一组,共四组,以不同颜色区分,这四组中1的个数分别为4,4,3,2,所以一共是13个1,如下面所示。

    10000111 01100101 01000011 00100001 = 4 + 4 + 3 + 2 = 13

    静态表-4bit

    原理和8-bit表相同,详见8-bit表的解释

    int BitCount(unsigned int n)
    {
        unsigned int table[16] = 
        {
            0, 1, 1, 2, 
            1, 2, 2, 3, 
            1, 2, 2, 3, 
            2, 3, 3, 4
        } ;
    
        unsigned int count =0 ;
        while (n)
        {
            count += table[n &0xf] ;
            n >>=4 ;
        }
        return count ;
    }
    

      

    静态表-8bit

    首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。然后对于任意一个32bit无符号整数n,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位,并与0xff相与,取得最低位的8bit,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例,其对应的二进制数为10101011110011011110111100010010,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。

    第一次(n & 0xff)             10101011110011011110111100010010

    第二次((n >> 8) & 0xff)  00000000101010111100110111101111

    第三次((n >> 16) & 0xff)00000000000000001010101111001101

    第四次((n >> 24) & 0xff)00000000000000000000000010101011

    int BitCount(unsigned int n)
    { 
        unsigned int table[256] = 
        { 
            0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
            1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
            2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
            3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
            4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 
        }; 
    
        return table[n &0xff] +
            table[(n >>8) &0xff] +
            table[(n >>16) &0xff] +
            table[(n >>24) &0xff] ;
    }
    

      

    当然也可以搞一个16bit的表,或者更极端一点32bit的表,速度将会更快。

    HAKMEM

    先看代码,稍后解释

    int BitCount(unsigned int n) 
    { 
        n = (n &0x55555555) + ((n >>1) &0x55555555) ; 
        n = (n &0x33333333) + ((n >>2) &0x33333333) ; 
        n = (n &0x0f0f0f0f) + ((n >>4) &0x0f0f0f0f) ; 
        n = (n &0x00ff00ff) + ((n >>8) &0x00ff00ff) ; 
        n = (n &0x0000ffff) + ((n >>16) &0x0000ffff) ; 
    
        return n ; 
    }
    

      

    速度不一定最快,但是想法绝对巧妙。 说一下其中奥妙,其实很简单,先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。

    以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1

    MIT HAKMEM

    int BitCount(unsigned int n) 
    {
        unsigned int tmp = n - ((n >>1) &033333333333) - ((n >>2) &011111111111);
        return ((tmp + (tmp >>3)) &030707070707) %63;
    }
    

      

    最喜欢这个,代码太简洁啦,只是有个取模运算,可能速度上慢一些。区区两行代码,就能计算出1的个数,到底有何奥妙呢?为了解释的清楚一点,我尽量多说几句。

    第一行代码的作用

    先说明一点,以0开头的是8进制数,以0x开头的是十六进制数,上面代码中使用了三个8进制数。

    将n的二进制表示写出来,然后每3bit分成一组,求出每一组中1的个数,再表示成二进制的形式。比如n = 50,其二进制表示为110010,分组后是110和010,这两组中1的个数本别是2和3。2对应010,3对应011,所以第一行代码结束后,tmp = 010011,具体是怎么实现的呢?由于每组3bit,所以这3bit对应的十进制数都能表示为2^2 * a + 2^1 * b + c的形式,也就是4a + 2b + c的形式,这里a,b,c的值为0或1,如果为0表示对应的二进制位上是0,如果为1表示对应的二进制位上是1,所以a + b + c的值也就是4a + 2b + c的二进制数中1的个数了。举个例子,十进制数6(0110)= 4 * 1 + 2 * 1 + 0,这里a = 1, b = 1, c = 0, a + b + c = 2,所以6的二进制表示中有两个1。现在的问题是,如何得到a + b + c呢?注意位运算中,右移一位相当于除2,就利用这个性质!

    4a + 2b + c 右移一位等于2a + b

    4a + 2b + c 右移量位等于a

    然后做减法

    4a + 2b + c –(2a + b) – a = a + b + c,这就是第一行代码所作的事,明白了吧。

    第二行代码的作用

    在第一行的基础上,将tmp中相邻的两组中1的个数累加,由于累加到过程中有些组被重复加了一次,所以要舍弃这些多加的部分,这就是&030707070707的作用,又由于最终结果可能大于63,所以要取模。

    需要注意的是,经过第一行代码后,从右侧起,每相邻的3bit只有四种可能,即000, 001, 010, 011,为啥呢?因为每3bit中1的个数最多为3。所以下面的加法中不存在进位的问题,因为3 + 3 = 6,不足8,不会产生进位。

    tmp + (tmp >> 3)-这句就是是相邻组相加,注意会产生重复相加的部分,比如tmp = 659 = 001 010 010 011时,tmp >> 3 = 000 001 010 010,相加得

    001 010 010 011

    000 001 010 010

    ---------------------

    001 011 100 101

    011 + 101 = 3 + 5 = 8。(感谢网友Di哈指正。)注意,659只是个中间变量,这个结果不代表659这个数的二进制形式中有8个1。

    注意我们想要的只是第二组和最后一组(绿色部分),而第一组和第三组(红色部分)属于重复相加的部分,要消除掉,这就是&030707070707所完成的任务(每隔三位删除三位),最后为什么还要%63呢?因为上面相当于每次计算相连的6bit中1的个数,最多是111111 = 77(八进制)= 63(十进制),所以最后要对63取模。

    位标志法

    感谢网友 gussing提供

    struct _byte 
    { 
        unsigned a:1; 
        unsigned b:1; 
        unsigned c:1; 
        unsigned d:1; 
        unsigned e:1; 
        unsigned f:1; 
        unsigned g:1; 
        unsigned h:1; 
    }; 
    
    long get_bit_count( unsigned char b ) 
    {
        struct _byte *by = (struct _byte*)&b; 
        return (by->a+by->b+by->c+by->d+by->e+by->f+by->g+by->h); 
    }
    

      

    指令法

    感谢网友 Milo Yip提供

    使用微软提供的指令,首先要确保你的CPU支持SSE4指令,用Everest和CPU-Z可以查看是否支持。

    unsigned int n =127 ;
    unsigned int bitCount = _mm_popcnt_u32(n) ;

    References

    http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/

    作者:zdd
  • 相关阅读:
    用cascade删除有约束的表或记录
    易混淆的Window窗体与父窗体之间位置关系
    界面主窗体,子窗体的InitializeComponent(构造函数)、Load事件执行顺序
    DEV CheckComboboxEdit、CheckedListBoxControl(转)
    程序实现DataGrid过滤设置
    创建触发器的基本语法
    查看dll中的函数(方法)
    delphi xe2 64位嵌入汇编问题 https://bbs.csdn.net/topics/390333981
    USB转换PS2接线原理
    Win8.1+VS2013+WDK8.1+VirtualBox or VMware 驱动开发环境配置
  • 原文地址:https://www.cnblogs.com/widerg/p/7074207.html
Copyright © 2011-2022 走看看