zoukankan      html  css  js  c++  java
  • HDU

    HDU - 2829

    思路:

    平形四边形不等式优化dp

    同上一篇博客

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    #define LD long double
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<int, pii>
    #define pdd pair<long double, long double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int N = 1e3 + 5;
    LL dp[N][N], w[N][N];
    int n, m, s[N][N], a[N];
    int main() {
        while(~scanf("%d %d", &n, &m) && n && m) {
            for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
            for (int i = 0; i <= m+1; ++i) for (int j = 0; j <= n; ++j) dp[i][j] = 1LL<<58;
            for (int i = 1; i <= n; ++i) {
                w[i][i] = 0;
                int s = a[i];
                for (int j = i+1; j <= n; ++j) {
                    w[i][j] = w[i][j-1]+s*a[j];
                    s += a[j];
                }
            }
            dp[0][0] = 0;
            for (int i = 1; i <= m+1; ++i) {
                w[i][n+1] = n-1;
                for (int j = n; j >= 1; --j) {
                    for (int k = w[i-1][j]; k <= w[i][j+1]; ++k) {
                        if(k+1 <= j && dp[i-1][k]+w[k+1][j] < dp[i][j]) {
                            dp[i][j] = dp[i-1][k]+w[k+1][j];
                            w[i][j] = k;
                        }
                    }
                }
            }
            printf("%d
    ", dp[m+1][n]);
        }
        return 0;
    }
  • 相关阅读:
    DDD之3实体和值对象
    DDD之2领域概念
    DDD之1微服务设计为什么选择DDD
    SOFA入门
    COLA的扩展性使用和源码研究
    kafka可插拔增强如何实现?
    请设计一个核心功能稳定适合二开扩展的软件系统
    如何保证kafka消息不丢失
    kafka高吞吐量之消息压缩
    kafka消息分区机制原理
  • 原文地址:https://www.cnblogs.com/widsom/p/10951796.html
Copyright © 2011-2022 走看看