zoukankan      html  css  js  c++  java
  • Codeforces 1187 F

    F - Expected Square Beauty

    思路:
    https://codeforces.com/blog/entry/68111

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int MOD = 1e9 + 7;
    const int N = 2e5 + 5;
    int l[N], r[N], n;
    LL p[N], q[N], sum[N];
    LL q_pow(LL n, LL k) {
        LL res = 1;
        while(k) {
            if(k&1) res = (res * n) % MOD;
            n = (n * n) % MOD;
            k >>= 1;
        }
        return res;
    }
    int main() {
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i) scanf("%d", &l[i]);
        for (int i = 1; i <= n; ++i) scanf("%d", &r[i]);
        for (int i = 1; i <= n; ++i) {
            int L = max(l[i-1], l[i]), R = min(r[i-1], r[i]);
            if(L > R) p[i] = 1, q[i] = 0;
            else q[i] = (R-L+1)*q_pow((r[i]-l[i]+1)*1LL*(r[i-1]-l[i-1]+1)%MOD, MOD-2)%MOD, p[i] = (1-q[i]+MOD)%MOD;
            sum[i] = (sum[i-1] + p[i]) % MOD;
        }
        LL ans = sum[n];
        for (int i = 1; i <= n ;++i) {
            LL tot = sum[n];
            tot = (tot - p[i])%MOD;
            if(i-1 >= 1) tot = (tot - p[i-1]) % MOD;
            if(i+1 <= n) tot = (tot - p[i+1]) % MOD;
            tot = (tot + MOD) % MOD;
            ans = (ans + p[i]*tot%MOD) % MOD;
        }
        for (int i = 1; i < n; ++i) {
            LL tot = ((1-q[i]-q[i+1])%MOD+MOD)%MOD;
            if(i-1 >= 1) {
                int L = max(l[i-1], max(l[i], l[i+1])), R= min(r[i-1], min(r[i], r[i+1]));
                if(L <= R)tot = (tot + (R-L+1)*q_pow((r[i]-l[i]+1)*1LL*(r[i-1]-l[i-1]+1)%MOD*(r[i+1]-l[i+1]+1)%MOD, MOD-2)%MOD)%MOD;
            }
            ans = (ans + 2*tot) % MOD;
        }
        printf("%lld
    ", ans%MOD);
        return 0;
    }
  • 相关阅读:
    webStrom 注释模板添加
    匹配正则 url 端口 域名
    监测数据类型封装方法
    base64图片展示(后端给base64数据,前端展示图片)
    倒计时
    机密16位
    mvc与mvvm的区别
    flex表格的使用
    flex中tab页面的实现
    flex中下拉框的实现
  • 原文地址:https://www.cnblogs.com/widsom/p/11131833.html
Copyright © 2011-2022 走看看