zoukankan      html  css  js  c++  java
  • LightOJ

    LightOJ - 1151

    思路:

    将期望dp[x]看成自变量,那么递推式就可以看成方程组,用高斯消元求方程组的解就能求解出期望值

    高斯消元求解的过程也是期望逆推的过程,注意边界情况的常数项,是6/d,不是1

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb emplace_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    //head
    
    const int N = 105;
    double A[N][N];
    void Gauss(int n) {
        for(int i = 0; i < n; i ++) {
            int r = i;
            for(int j = i + 1; j < n; j ++)
                if(fabs(A[j][i]) > fabs(A[r][i])) r = j;
            if(r != i) for(int j = 0; j <= n; j ++) swap(A[r][j], A[i][j]);
    
            for(int j = n; j >= i; j --) {
                for(int k = i + 1; k < n; k ++)
                    A[k][j] -= A[k][i] / A[i][i] * A[i][j];
            }
        }
    
        for(int i = n - 1; i >= 0; i --) {
            for(int j = i + 1; j < n; j ++)
                A[i][n] -= A[j][n] * A[i][j];
            A[i][n] /= A[i][i];
        }
    }
    int T, n, a, b, to[105];
    int main() {
        scanf("%d", &T);
        for(int cs = 1; cs <= T; ++cs) {
            scanf("%d", &n);
            for (int i = 1; i <= 100; ++i) to[i] = 0;
            for (int i = 1; i <= n; ++i) scanf("%d %d", &a, &b), to[a] = b;
    
            for (int i = 0; i <= 100; ++i) for (int j = 0; j <= 100; ++j) A[i][j] = 0;
            for (int i = 1; i <= 100; ++i) {
                A[i-1][i-1] = 1;
                if(to[i]) {
                    A[i-1][to[i]-1] = -1;
                }
                else {
                    int x = min(6, 100-i);
                    for (int j = 1; j <= x; ++j) {
                        A[i-1][i+j-1] = -1.0/x;
                    }
                    if(i < 100) A[i-1][100] = 6.0/x;
                }
            }
            Gauss(100);
            printf("Case %d: %.10f
    ", cs, A[0][100]);
        }
        return 0;
    }
  • 相关阅读:
    数字图像-概述
    Python-python打包编译成pyd或者.so,保护代码。
    计算机组成原理-概述
    9大开源云管理平台(CMP)
    计算机组成原理-CPU-CPU知识科普:秒懂主频、核心、线程、缓存、架构详解
    svn git协同管理
    DEVTMPFS
    关于flash擦除的方法
    SQLServer强制保存
    360极速浏览器无法正确getHours
  • 原文地址:https://www.cnblogs.com/widsom/p/11203088.html
Copyright © 2011-2022 走看看