zoukankan      html  css  js  c++  java
  • 算法笔记--sg函数详解及其模板

    算法笔记

    参考资料:https://wenku.baidu.com/view/25540742a8956bec0975e3a8.html

    sg函数大神详解:http://blog.csdn.net/luomingjun12315/article/details/45555495

    sg[i]定义,从i走一步能到达的j的sg[j]以外的最小值,那么从sg函数值为x的状态出发,我们能转移到sg值为0,1,...,x-1的状态

    对于某个人来说,0是他的必败态,sg[0] = 0

    我们从这个状态出发,用dp求sg函数的值

    sg[n] = 0,表示必败,否则, 表示必胜 

    如果sg[n] > 0,说明肯定能转移到必败态,则必胜

    如果sg[n] = 0, 说明无论怎么转移都是必胜态,则必败

    模板:

    int f[N],SG[N];
    bool S[M];
    void getSG(int n)
    {
        memset(SG,0,sizeof(SG));
        for(int i=1;i<=n;i++)
        {
            memset(S,false,sizeof(S));
            for(int j=1;f[j]<=i&&j<M;j++)
            {
                 S[SG[i-f[j]]]=true;
            }
            while(S[SG[i]]) SG[i]++;
        }
    }

    例题:http://www.cnblogs.com/widsom/p/7171428.html

       http://www.cnblogs.com/widsom/p/7170891.html

    sg函数拓展:

    反sg博弈:

    先手必胜:(所有单一局面sg值都不超过1&&总局面sg值为0) || (存在一个单一局面sg值超过1&&总局面sg值不为0)

    否则后手必胜。

    HDU 1907

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    
    const int N = 55, M = 5e3 + 5;
    int a[N], sg[M], T, n;
    int main() {
        for (int i = 0; i < M; ++i) sg[i] = i;
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);
            int cnt = 0, s = 0;
            for (int i = 1; i <= n; ++i) {
                    if(sg[a[i]] > 1) ++cnt;
                    s ^= sg[a[i]];
            }
            if((!cnt && !s) || (cnt && s)) printf("John
    ");
            else printf("Brother
    ");
        }
        return 0;
    }
    View Code

    树上删边博弈:

    定理:叶子节点的sg值为0,其他节点u的sg[u]值等于它儿子v的(sg[v]+1)的亦或和。

    图上删边博弈:

    将偶环缩成点,奇环缩成一个点加一条边,就可以转换成树上删边博弈了。

    具体证明看最上面的链接。

    HDU 3094

    思路:树上删边博弈

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    
    const int N = 1e5 + 5;
    vector<int> g[N];
    int T, n, u, v;
    int sg(int u, int o) {
        int res = 0;
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i];
            if(v != o) res ^= sg(v, u) + 1;
        }
        return res;
    }
    int main() {
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            for (int i = 1; i < n; ++i) scanf("%d %d", &u, &v), g[u].pb(v), g[v].pb(u);
            if(sg(1, 1)) printf("Alice
    ");
            else printf("Bob
    ");
            for (int i = 1; i <= n; ++i) g[i].clear();
        }
        return 0;
    }
    View Code

    POJ 3710

    思路:tarjan缩边双转换成树上删边博弈

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<vector>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    
    const int N = 105;
    vector<int> g[N];
    int t, n, m, u, v;
    int stk[N], sg[N], low[N], dfn[N], cnt = 0, top = 0;
    bool vis[N], vv[N];//vv标记环上的点是否被删掉
    void tarjan(int u, int o) {
        dfn[u] = low[u] = ++cnt;
        stk[++top] = u;
        vv[u] = vis[u] = true;
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i];
            if(v == o) continue;
            if(!dfn[v]) tarjan(v, u), low[u] = min(low[u], low[v]);
            else if(vis[v]) low[u] = min(low[u], dfn[v]);
        }
        if(low[u] == dfn[u]) {
            int c = 0;
            while(stk[top] != u) {
                vv[stk[top]] = false;
                vis[stk[top--]] = false;
                ++c;
            }
            vis[stk[top--]] = false;
            ++c;
            if(c > 1 && c%2) sg[u] ^= 1;
        }
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i];
            if(v == o) continue;
            if(vv[v]) sg[u] ^= sg[v]+1;
        }
    }
    int main() {
        while(~scanf("%d", &t)) {
            int s = 0;
            while(t--) {
                scanf("%d %d", &n, &m);
                for (int i = 0; i < m; ++i) {
                    scanf("%d %d", &u, &v);
                    g[u].pb(v);
                    g[v].pb(u);
                }
                tarjan(1, 1);
                s ^= sg[1];
                for (int i = 1; i <= n; ++i) low[i] = dfn[i] = sg[i] = vis[i] = vv[i] = 0;
                cnt = top = 0;
                for (int i = 1; i <= n; ++i) g[i].clear();
            }
            if(s) printf("Sally
    ");
            else printf("Harry
    ");
        }
        return 0;
    }
    View Code

     HDU 5299

    思路:

    圆扫描线+树上删边博弈

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    
    const int N = 2e4 + 5;
    int nowx;
    struct circle {
        int x, y, r;
    }p[N];
    double Y(int id, int ty) {
        if(ty == 0) return p[id].y - sqrt(p[id].r*1.0*p[id].r - (nowx-p[id].x)*1.0*(nowx-p[id].x));
        else return p[id].y + sqrt(p[id].r*1.0*p[id].r - (nowx-p[id].x)*1.0*(nowx-p[id].x));
    }
    struct node {
        int id, ty;
        bool operator < (const node &rhs) const {
            if(id == rhs.id) return ty < rhs.ty;
            else return Y(id, ty) < Y(rhs.id, rhs.ty);
        }
    };
    set<node> s;
    vector<int> g[N];
    int T, n, dp[N], fa[N], sg[N];
    piii t[N*2];
    void dfs(int u, int o) {
        sg[u] = 0;
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i];
            if(v != o) {
                dfs(v, u);
                sg[u] ^= sg[v] + 1;
            }
        }
    }
    int main() {
        p[0].x = p[0].y = 0;
        p[0].r = 100000;
        s.insert({0, 0});
        s.insert({0, 1});
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            for (int i = 1; i <= n; ++i) scanf("%d %d %d", &p[i].x, &p[i].y, &p[i].r);
            for (int i = 1; i <= n; ++i) {
                t[i].fi.fi = p[i].x - p[i].r;
                t[i].fi.se = 0;
                t[i].se = i;
                t[n+i].fi.fi = p[i].x + p[i].r;
                t[n+i].fi.se = 1;
                t[n+i].se = i;
            }
            sort(t+1, t+1+2*n);
            for (int i = 1; i <= 2*n; ++i) {
                nowx = t[i].fi.fi;
                int id = t[i].se;
                node tmp = {id, 1};
                if(t[i].fi.se == 0) {
                    auto l = s.lower_bound(tmp); --l;
                    auto r = s.upper_bound(tmp);
                    if((*l).id == (*r).id) {
                        dp[id] = dp[(*l).id] + 1;
                        fa[id] = (*l).id;
                    }
                    else if(dp[(*l).id] >= dp[(*r).id]) {
                        dp[id] = dp[(*l).id];
                        fa[id] = fa[(*l).id];
                    }
                    else {
                        dp[id] = dp[(*r).id];
                        fa[id] = fa[(*r).id];
    
                    }
                    g[fa[id]].pb(id);
                    s.insert({id, 1});
                    s.insert({id, 0});
                }
                else {
                    s.erase({id, 1});
                    s.erase({id, 0});
                }
            }
            dfs(0, 0);
            if(sg[0]) printf("Alice
    ");
            else printf("Bob
    ");
            for (int i = 0; i <= n; ++i) g[i].clear(), sg[i] = fa[i] = dp[i] = 0;
        }
        return 0;
    }
    View Code

     HDU 3590

    思路:

    出题人真是个机灵鬼,将反-sg和树上删边结合起来,大概是看了论文后才出的题(雾

    代码:

    #pragma GCC optimize(2)
    #pragma GCC optimize(3)
    #pragma GCC optimize(4)
    #include<bits/stdc++.h>
    using namespace std;
    #define y1 y11
    #define fi first
    #define se second
    #define pi acos(-1.0)
    #define LL long long
    //#define mp make_pair
    #define pb push_back
    #define ls rt<<1, l, m
    #define rs rt<<1|1, m+1, r
    #define ULL unsigned LL
    #define pll pair<LL, LL>
    #define pli pair<LL, int>
    #define pii pair<int, int>
    #define piii pair<pii, int>
    #define pdd pair<double, double>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define debug(x) cerr << #x << " = " << x << "
    ";
    
    const int N = 105;
    vector<int> g[N];
    int t, n, u, v;
    int dfs(int u, int o) {
        int sg = 0;
        for (int i = 0; i < g[u].size(); ++i) {
            int v = g[u][i];
            if(v != o) sg ^= dfs(v, u) + 1;
        }
        return sg;
    }
    int main() {
        while(~scanf("%d", &t)) {
            int cnt = 0, s = 0;
            while(t--) {
                scanf("%d", &n);
                for (int i = 1; i < n; ++i) scanf("%d %d", &u, &v), g[u].pb(v), g[v].pb(u);
                int sg = dfs(1, 1);
                s ^= sg;
                if(sg > 1) ++cnt;
                for (int i = 0; i <= n; ++i) g[i].clear();
            }
            if((cnt && s) || (!cnt && !s)) printf("PP
    ");
            else printf("QQ
    ");
        }
        return 0;
    }
    View Code
  • 相关阅读:
    远程桌面无法复制粘贴
    xshell连接时报错:Could not connect to '192.168.2.125' (port 22): Connection failed.
    xshell远程连接另一台电脑的数据库,启动图形失败
    查询表空间总大小(dba_data_files和dba_segments,dba_free_space区别)
    网关,路由,子网掩码的作用
    Windows10无线能连上但没有网络
    如何让网页上的字如何变大
    MySQL数据查询(重点)
    MySQL增删改数据
    MySQL的表管理
  • 原文地址:https://www.cnblogs.com/widsom/p/7172386.html
Copyright © 2011-2022 走看看