zoukankan      html  css  js  c++  java
  • stl_alloc.h

    /*
     * Copyright (c) 1996-1997
     * Silicon Graphics Computer Systems, Inc.
     *
     * Permission to use, copy, modify, distribute and sell this software
     * and its documentation for any purpose is hereby granted without fee,
     * provided that the above copyright notice appear in all copies and
     * that both that copyright notice and this permission notice appear
     * in supporting documentation.  Silicon Graphics makes no
     * representations about the suitability of this software for any
     * purpose.  It is provided "as is" without express or implied warranty.
     */
    
    /* NOTE: This is an internal header file, included by other STL headers.
     *   You should not attempt to use it directly.
     */
    
    #ifndef __SGI_STL_INTERNAL_ALLOC_H
    #define __SGI_STL_INTERNAL_ALLOC_H
    
    #ifdef __SUNPRO_CC
    #  define __PRIVATE public
       // Extra access restrictions prevent us from really making some things
       // private.
    #else
    #  define __PRIVATE private
    #endif
    
    #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
    #  define __USE_MALLOC
    #endif
    
    
    //这个实现一些标准结点的内存分配管理器。这些配置器与C++标准草稿所描述的或与原始的STL所描述的都不相同。
    //它们并没有封装不同的指针类型,实际上,我们假设仅存在一种指针类型。
    //一些基本的函式意在分配那些不大于原始STL配置器所能分配的最大空间的个别对象独立对象。
    
    
    #if 0
    #   include <new>
    #   define __THROW_BAD_ALLOC throw bad_alloc
    #elif !defined(__THROW_BAD_ALLOC)
    #   include <iostream.h>
    #   define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
    #endif
    
    #ifndef __ALLOC
    #   define __ALLOC alloc
    #endif
    #ifdef __STL_WIN32THREADS
    #   include <windows.h>
    #endif
    
    #include <stddef.h>
    #include <stdlib.h>
    #include <string.h>
    #include <assert.h>
    #ifndef __RESTRICT
    #  define __RESTRICT
    #endif
    
    #if !defined(__STL_PTHREADS) && !defined(_NOTHREADS) 
     && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
    #   define _NOTHREADS
    #endif
    
    # ifdef __STL_PTHREADS
        // POSIX Threads
        // This is dubious, since this is likely to be a high contention
        // lock.   Performance may not be adequate.
    #   include <pthread.h>
    #   define __NODE_ALLOCATOR_LOCK 
            if (threads) pthread_mutex_lock(&__node_allocator_lock)
    #   define __NODE_ALLOCATOR_UNLOCK 
            if (threads) pthread_mutex_unlock(&__node_allocator_lock)
    #   define __NODE_ALLOCATOR_THREADS true
    #   define __VOLATILE volatile  // Needed at -O3 on SGI
    # endif
    # ifdef __STL_WIN32THREADS
        // The lock needs to be initialized by constructing an allocator
        // objects of the right type.  We do that here explicitly for alloc.
    #   define __NODE_ALLOCATOR_LOCK 
            EnterCriticalSection(&__node_allocator_lock)
    #   define __NODE_ALLOCATOR_UNLOCK 
            LeaveCriticalSection(&__node_allocator_lock)
    #   define __NODE_ALLOCATOR_THREADS true
    #   define __VOLATILE volatile  // may not be needed
    # endif /* WIN32THREADS */
    # ifdef __STL_SGI_THREADS
        // This should work without threads, with sproc threads, or with
        // pthreads.  It is suboptimal in all cases.
        // It is unlikely to even compile on nonSGI machines.
    
        extern "C" {
          extern int __us_rsthread_malloc;
        }
        // The above is copied from malloc.h.  Including <malloc.h>
        // would be cleaner but fails with certain levels of standard
        // conformance.
    #   define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) 
                    { __lock(&__node_allocator_lock); }
    #   define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) 
                    { __unlock(&__node_allocator_lock); }
    #   define __NODE_ALLOCATOR_THREADS true
    #   define __VOLATILE volatile  // Needed at -O3 on SGI
    # endif
    # ifdef _NOTHREADS
    //  Thread-unsafe
    #   define __NODE_ALLOCATOR_LOCK
    #   define __NODE_ALLOCATOR_UNLOCK
    #   define __NODE_ALLOCATOR_THREADS false
    #   define __VOLATILE
    # endif
    
    __STL_BEGIN_NAMESPACE
    
    #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
    #pragma set woff 1174
    #endif
    
    
    // 基于malloc的分配器通常比稍後介紹的 default alloc 速度慢,
    // 一般而言是线程安全的,並且對於空間的運用比較高效。
    
    #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
    # ifdef __DECLARE_GLOBALS_HERE
        void (* __malloc_alloc_oom_handler)() = 0;
        // g++ 2.7.2 does not handle static template data members.
    # else
        extern void (* __malloc_alloc_oom_handler)();
    # endif
    #endif
    
    // 以下是第一级配置器。注意,没有[template型别参数]。因为inst完全没有派上用场。
    template <int inst>
    class __malloc_alloc_template {
    
    private:
    // 内存分配失败处理函数,利用循环
    static void *oom_malloc(size_t);
    
    static void *oom_realloc(void *, size_t);
    
    #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
        static void (* __malloc_alloc_oom_handler)();
    #endif
    
    public:
    
    static void * allocate(size_t n)
    {
        void *result = malloc(n);// 第一级配置器直接使用malloc系统调用
        if (0 == result) result = oom_malloc(n);//内存分配失败,调用oom_malloc处理函数
        return result;
    }
    
    static void deallocate(void *p, size_t /* n */)
    {
        free(p);//第一级配置器直接使用free系统调用
    }
    
    static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)
    {
        void * result = realloc(p, new_sz);//第一级配置器直接使用realloc系统调用
        if (0 == result) result = oom_realloc(p, new_sz);//内存分配失败,调用oom_realloc处理函数
        return result;
    }
    
    // 以下類似 C++ 的 set_new_handler().
    static void (* set_malloc_handler(void (*f)()))()
    {
        void (* old)() = __malloc_alloc_oom_handler;
        __malloc_alloc_oom_handler = f;
        return(old);
    }
    
    };
    // 第一级配置器定义完毕
    
    // malloc_alloc out-of-memory handling
    
    #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
    template <int inst>
    void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;
    #endif
    
    // 内存分配失败处理函数定义
    // 原理:不断尝试释放、配置、再释放、再配置…
    template <int inst>
    void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
    {
        void (* my_malloc_handler)();
        void *result;
    
        for (;;) {
            my_malloc_handler = __malloc_alloc_oom_handler;
            if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
            (*my_malloc_handler)();    //调用函数指针指向的处理函数,企图释放记忆内存
            result = malloc(n);        //第一级配置器直接使用malloc系统调用
            if (result) return(result);//直到分配内存成功
        }
    }
    
    template <int inst>
    void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)
    {
        void (* my_malloc_handler)();
        void *result;
    
        for (;;) {
            my_malloc_handler = __malloc_alloc_oom_handler;
            if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
            (*my_malloc_handler)();
            result = realloc(p, n);    //第一级配置器直接使用realloc系统调用
            if (result) return(result);//直到分配内存成功
        }
    }
    
    typedef __malloc_alloc_template<0> malloc_alloc;
    
    
    //简单的内存配置器,调用Alloc类型的方法进行内存申请与释放
    template<class T, class Alloc>
    class simple_alloc {
    
    public:
        static T *allocate(size_t n)
                    { return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
        static T *allocate(void)
                    { return (T*) Alloc::allocate(sizeof (T)); }
        static void deallocate(T *p, size_t n)
                    { if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
        static void deallocate(T *p)
                    { Alloc::deallocate(p, sizeof (T)); }
    };
    
    // Allocator adaptor to check size arguments for debugging.
    // Reports errors using assert.  Checking can be disabled with
    // NDEBUG, but it's far better to just use the underlying allocator
    // instead when no checking is desired.
    // There is some evidence that this can confuse Purify.
    template <class Alloc>
    class debug_alloc {
    
    private:
    
    enum {extra = 8};       // Size of space used to store size.  Note
                            // that this must be large enough to preserve
                            // alignment.
    
    public:
    
    static void * allocate(size_t n)
    {
        char *result = (char *)Alloc::allocate(n + extra);
        *(size_t *)result = n;
        return result + extra;
    }
    
    static void deallocate(void *p, size_t n)
    {
        char * real_p = (char *)p - extra;
        assert(*(size_t *)real_p == n);
        Alloc::deallocate(real_p, n + extra);
    }
    
    static void * reallocate(void *p, size_t old_sz, size_t new_sz)
    {
        char * real_p = (char *)p - extra;
        assert(*(size_t *)real_p == old_sz);
        char * result = (char *)
                      Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);
        *(size_t *)result = new_sz;
        return result + extra;
    }
    
    
    };
    
    
    # ifdef __USE_MALLOC
    
    typedef malloc_alloc alloc;
    typedef malloc_alloc single_client_alloc;
    
    # else
    
    
    // Default node allocator.
    // With a reasonable compiler, this should be roughly as fast as the
    // original STL class-specific allocators, but with less fragmentation.
    // Default_alloc_template parameters are experimental and MAY
    // DISAPPEAR in the future.  Clients should just use alloc for now.
    //
    // Important implementation properties:
    // 1. If the client request an object of size > __MAX_BYTES, the resulting
    //    object will be obtained directly from malloc.
    // 2. In all other cases, we allocate an object of size exactly
    //    ROUND_UP(requested_size).  Thus the client has enough size
    //    information that we can return the object to the proper free list
    //    without permanently losing part of the object.
    //
    
    // The first template parameter specifies whether more than one thread
    // may use this allocator.  It is safe to allocate an object from
    // one instance of a default_alloc and deallocate it with another
    // one.  This effectively transfers its ownership to the second one.
    // This may have undesirable effects on reference locality.
    // The second parameter is unreferenced and serves only to allow the
    // creation of multiple default_alloc instances.
    // Node that containers built on different allocator instances have
    // different types, limiting the utility of this approach.
    #ifdef __SUNPRO_CC
    // breaks if we make these template class members:
      enum {__ALIGN = 8};
      enum {__MAX_BYTES = 128};
      enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
    #endif
    
    template <bool threads, int inst>
    class __default_alloc_template {
    
    private:
      // Really we should use static const int x = N
      // instead of enum { x = N }, but few compilers accept the former.
    # ifndef __SUNPRO_CC
        enum {__ALIGN = 8};
        enum {__MAX_BYTES = 128};
        enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
    # endif
      static size_t ROUND_UP(size_t bytes) {
            return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));
      }
    __PRIVATE:
      union obj {
            union obj * free_list_link;
            char client_data[1];    /* The client sees this.        */
      };
    private:
    # ifdef __SUNPRO_CC
        static obj * __VOLATILE free_list[]; 
            // Specifying a size results in duplicate def for 4.1
    # else
        static obj * __VOLATILE free_list[__NFREELISTS]; 
    # endif
      static  size_t FREELIST_INDEX(size_t bytes) {
            return (((bytes) + __ALIGN-1)/__ALIGN - 1);
      }
    
      // Returns an object of size n, and optionally adds to size n free list.
      static void *refill(size_t n);
      // Allocates a chunk for nobjs of size "size".  nobjs may be reduced
      // if it is inconvenient to allocate the requested number.
      static char *chunk_alloc(size_t size, int &nobjs);
    
      // Chunk allocation state.
      static char *start_free;
      static char *end_free;
      static size_t heap_size;
    
    # ifdef __STL_SGI_THREADS
        static volatile unsigned long __node_allocator_lock;
        static void __lock(volatile unsigned long *); 
        static inline void __unlock(volatile unsigned long *);
    # endif
    
    # ifdef __STL_PTHREADS
        static pthread_mutex_t __node_allocator_lock;
    # endif
    
    # ifdef __STL_WIN32THREADS
        static CRITICAL_SECTION __node_allocator_lock;
        static bool __node_allocator_lock_initialized;
    
      public:
        __default_alloc_template() {
        // This assumes the first constructor is called before threads
        // are started.
            if (!__node_allocator_lock_initialized) {
                InitializeCriticalSection(&__node_allocator_lock);
                __node_allocator_lock_initialized = true;
            }
        }
      private:
    # endif
    
        class lock {
            public:
                lock() { __NODE_ALLOCATOR_LOCK; }
                ~lock() { __NODE_ALLOCATOR_UNLOCK; }
        };
        friend class lock;
    
    public:
    
      /* n must be > 0      */
      static void * allocate(size_t n)
      {
        obj * __VOLATILE * my_free_list;
        obj * __RESTRICT result;
    
        if (n > (size_t) __MAX_BYTES) {
            return(malloc_alloc::allocate(n));
        }
        my_free_list = free_list + FREELIST_INDEX(n);
        // Acquire the lock here with a constructor call.
        // This ensures that it is released in exit or during stack
        // unwinding.
    #       ifndef _NOTHREADS
            /*REFERENCED*/
            lock lock_instance;
    #       endif
        result = *my_free_list;
        if (result == 0) {
            void *r = refill(ROUND_UP(n));
            return r;
        }
        *my_free_list = result -> free_list_link;
        return (result);
      };
    
      /* p may not be 0 */
      static void deallocate(void *p, size_t n)
      {
        obj *q = (obj *)p;
        obj * __VOLATILE * my_free_list;
    
        if (n > (size_t) __MAX_BYTES) {
            malloc_alloc::deallocate(p, n);
            return;
        }
        my_free_list = free_list + FREELIST_INDEX(n);
        // acquire lock
    #       ifndef _NOTHREADS
            /*REFERENCED*/
            lock lock_instance;
    #       endif /* _NOTHREADS */
        q -> free_list_link = *my_free_list;
        *my_free_list = q;
        // lock is released here
      }
    
      static void * reallocate(void *p, size_t old_sz, size_t new_sz);
    
    } ;
    
    typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
    typedef __default_alloc_template<false, 0> single_client_alloc;
    
    
    
    /* We allocate memory in large chunks in order to avoid fragmenting     */
    /* the malloc heap too much.                                            */
    /* We assume that size is properly aligned.                             */
    /* We hold the allocation lock.                                         */
    template <bool threads, int inst>
    char*
    __default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)
    {
        char * result;
        size_t total_bytes = size * nobjs;
        size_t bytes_left = end_free - start_free;
    
        if (bytes_left >= total_bytes) {
            result = start_free;
            start_free += total_bytes;
            return(result);
        } else if (bytes_left >= size) {
            nobjs = bytes_left/size;
            total_bytes = size * nobjs;
            result = start_free;
            start_free += total_bytes;
            return(result);
        } else {
            size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
            // Try to make use of the left-over piece.
            if (bytes_left > 0) {
                obj * __VOLATILE * my_free_list =
                            free_list + FREELIST_INDEX(bytes_left);
    
                ((obj *)start_free) -> free_list_link = *my_free_list;
                *my_free_list = (obj *)start_free;
            }
            start_free = (char *)malloc(bytes_to_get);
            if (0 == start_free) {
                int i;
                obj * __VOLATILE * my_free_list, *p;
                // Try to make do with what we have.  That can't
                // hurt.  We do not try smaller requests, since that tends
                // to result in disaster on multi-process machines.
                for (i = size; i <= __MAX_BYTES; i += __ALIGN) {
                    my_free_list = free_list + FREELIST_INDEX(i);
                    p = *my_free_list;
                    if (0 != p) {
                        *my_free_list = p -> free_list_link;
                        start_free = (char *)p;
                        end_free = start_free + i;
                        return(chunk_alloc(size, nobjs));
                        // Any leftover piece will eventually make it to the
                        // right free list.
                    }
                }
            end_free = 0;    // In case of exception.
                start_free = (char *)malloc_alloc::allocate(bytes_to_get);
                // This should either throw an
                // exception or remedy the situation.  Thus we assume it
                // succeeded.
            }
            heap_size += bytes_to_get;
            end_free = start_free + bytes_to_get;
            return(chunk_alloc(size, nobjs));
        }
    }
    
    
    /* Returns an object of size n, and optionally adds to size n free list.*/
    /* We assume that n is properly aligned.                                */
    /* We hold the allocation lock.                                         */
    template <bool threads, int inst>
    void* __default_alloc_template<threads, inst>::refill(size_t n)
    {
        int nobjs = 20;
        char * chunk = chunk_alloc(n, nobjs);
        obj * __VOLATILE * my_free_list;
        obj * result;
        obj * current_obj, * next_obj;
        int i;
    
        if (1 == nobjs) return(chunk);
        my_free_list = free_list + FREELIST_INDEX(n);
    
        /* Build free list in chunk */
          result = (obj *)chunk;
          *my_free_list = next_obj = (obj *)(chunk + n);
          for (i = 1; ; i++) {
            current_obj = next_obj;
            next_obj = (obj *)((char *)next_obj + n);
            if (nobjs - 1 == i) {
                current_obj -> free_list_link = 0;
                break;
            } else {
                current_obj -> free_list_link = next_obj;
            }
          }
        return(result);
    }
    
    template <bool threads, int inst>
    void*
    __default_alloc_template<threads, inst>::reallocate(void *p,
                                                        size_t old_sz,
                                                        size_t new_sz)
    {
        void * result;
        size_t copy_sz;
    
        if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) {
            return(realloc(p, new_sz));
        }
        if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
        result = allocate(new_sz);
        copy_sz = new_sz > old_sz? old_sz : new_sz;
        memcpy(result, p, copy_sz);
        deallocate(p, old_sz);
        return(result);
    }
    
    #ifdef __STL_PTHREADS
        template <bool threads, int inst>
        pthread_mutex_t
        __default_alloc_template<threads, inst>::__node_allocator_lock
            = PTHREAD_MUTEX_INITIALIZER;
    #endif
    
    #ifdef __STL_WIN32THREADS
        template <bool threads, int inst> CRITICAL_SECTION
        __default_alloc_template<threads, inst>::__node_allocator_lock;
    
        template <bool threads, int inst> bool
        __default_alloc_template<threads, inst>::__node_allocator_lock_initialized
        = false;
    #endif
    
    #ifdef __STL_SGI_THREADS
    __STL_END_NAMESPACE
    #include <mutex.h>
    #include <time.h>
    __STL_BEGIN_NAMESPACE
    // Somewhat generic lock implementations.  We need only test-and-set
    // and some way to sleep.  These should work with both SGI pthreads
    // and sproc threads.  They may be useful on other systems.
    template <bool threads, int inst>
    volatile unsigned long
    __default_alloc_template<threads, inst>::__node_allocator_lock = 0;
    
    #if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
    #   define __test_and_set(l,v) test_and_set(l,v)
    #endif
    
    template <bool threads, int inst>
    void 
    __default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)
    {
        const unsigned low_spin_max = 30;  // spin cycles if we suspect uniprocessor
        const unsigned high_spin_max = 1000; // spin cycles for multiprocessor
        static unsigned spin_max = low_spin_max;
        unsigned my_spin_max;
        static unsigned last_spins = 0;
        unsigned my_last_spins;
        static struct timespec ts = {0, 1000};
        unsigned junk;
    #   define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
        int i;
    
        if (!__test_and_set((unsigned long *)lock, 1)) {
            return;
        }
        my_spin_max = spin_max;
        my_last_spins = last_spins;
        for (i = 0; i < my_spin_max; i++) {
            if (i < my_last_spins/2 || *lock) {
                __ALLOC_PAUSE;
                continue;
            }
            if (!__test_and_set((unsigned long *)lock, 1)) {
                // got it!
                // Spinning worked.  Thus we're probably not being scheduled
                // against the other process with which we were contending.
                // Thus it makes sense to spin longer the next time.
                last_spins = i;
                spin_max = high_spin_max;
                return;
            }
        }
        // We are probably being scheduled against the other process.  Sleep.
        spin_max = low_spin_max;
        for (;;) {
            if (!__test_and_set((unsigned long *)lock, 1)) {
                return;
            }
            nanosleep(&ts, 0);
        }
    }
    
    template <bool threads, int inst>
    inline void
    __default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)
    {
    #   if defined(__GNUC__) && __mips >= 3
            asm("sync");
            *lock = 0;
    #   elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
            __lock_release(lock);
    #   else 
            *lock = 0;
            // This is not sufficient on many multiprocessors, since
            // writes to protected variables and the lock may be reordered.
    #   endif
    }
    #endif
    
    template <bool threads, int inst>
    char *__default_alloc_template<threads, inst>::start_free = 0;
    
    template <bool threads, int inst>
    char *__default_alloc_template<threads, inst>::end_free = 0;
    
    template <bool threads, int inst>
    size_t __default_alloc_template<threads, inst>::heap_size = 0;
    
    template <bool threads, int inst>
    __default_alloc_template<threads, inst>::obj * __VOLATILE
    __default_alloc_template<threads, inst> ::free_list[
    # ifdef __SUNPRO_CC
        __NFREELISTS
    # else
        __default_alloc_template<threads, inst>::__NFREELISTS
    # endif
    ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
    // The 16 zeros are necessary to make version 4.1 of the SunPro
    // compiler happy.  Otherwise it appears to allocate too little
    // space for the array.
    
    # ifdef __STL_WIN32THREADS
      // Create one to get critical section initialized.
      // We do this onece per file, but only the first constructor
      // does anything.
      static alloc __node_allocator_dummy_instance;
    # endif
    
    #endif /* ! __USE_MALLOC */
    
    #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
    #pragma reset woff 1174
    #endif
    
    __STL_END_NAMESPACE
    
    #undef __PRIVATE
    
    #endif /* __SGI_STL_INTERNAL_ALLOC_H */
    
    // Local Variables:
    // mode:C++
    // End:
  • 相关阅读:
    django序列化器Serializers
    django中模型类变更问题
    django图书管理系统-外键字段的增删改查
    django图书管理系统模型创建
    django中使用KindEditor上传图片
    成长
    git提交代码的经验
    react项目打包
    node——moudle
    git
  • 原文地址:https://www.cnblogs.com/wiessharling/p/4393401.html
Copyright © 2011-2022 走看看