keras-Dropout剪枝操作的应用
1.载入数据以及预处理
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import * from keras.optimizers import SGD import os import tensorflow as tf # 载入数据 (x_train,y_train),(x_test,y_test) = mnist.load_data() # 预处理 # 将(60000,28,28)转化为(600000,784),好输入展开层 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test= x_test.reshape(x_test.shape[0],-1)/255.0 # 将输出转化为one_hot编码 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10)
2.创建网络打印训练结果
# 创建网络 model = Sequential([
Dense(units=128,input_dim=784,bias_initializer='one',activation='tanh'),
# Dropout进行减枝,使得部分训练参数失效,避免过拟和
Dropout(0.4),
Dense(units=128,bias_initializer='one',activation='tanh'),
Dropout(0.4),
Dense(units=10,bias_initializer='one',activation='softmax')
])
# 编译
# 自定义优化器
sgd = SGD(lr=0.1) model.compile(optimizer=sgd,
# 运用交叉熵 loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train,y_train,batch_size=32,epochs=10,validation_split=0.2) # 评估模型 loss,acc = model.evaluate(x_test,y_test,) print(' test loss',loss) print('test acc',acc)
out:
Epoch 1/10
32/48000 [..............................] - ETA: 5:04 - loss: 2.7763 - acc: 0.1250
576/48000 [..............................] - ETA: 21s - loss: 2.6202 - acc: 0.1354
......
......
Epoch 10/10
47744/48000 [============================>.] - ETA: 0s - loss: 0.1830 - acc: 0.9448
48000/48000 [==============================] - 3s 72us/step - loss: 0.1831 - acc: 0.9449 - val_loss: 0.1210 - val_acc: 0.9649
32/10000 [..............................] - ETA: 0s
1824/10000 [====>.........................] - ETA: 0s
3616/10000 [=========>....................] - ETA: 0s
5472/10000 [===============>..............] - ETA: 0s
7456/10000 [=====================>........] - ETA: 0s
9440/10000 [===========================>..] - ETA: 0s
10000/10000 [==============================] - 0s 27us/step
test loss 0.11740412595644593
test acc 0.9652