zoukankan      html  css  js  c++  java
  • 【LeetCode & 剑指offer刷题】发散思维题3:62 圆圈中最后剩下的数字(约瑟夫环问题)

    【LeetCode & 剑指offer 刷题笔记】目录(持续更新中...)

    62 圆圈中最后剩下的数字(约瑟夫环问题)

     

    题目描述

    每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0...m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!^_^)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
     
    方法一:用数组模拟过程(也可以用链表模拟)
    /*
    约瑟夫环问题
    方法一:用数组模拟过程,删除之后剩下的元素即为最后结果(可用状态数组)
    81ms,有点慢
    O(nlogm(n)), O(n)
    */
    class Solution
    {
    public:
        int LastRemaining_Solution(int n, int m)
        {
            vector<int> state(n, 1); //定义一个数组存储各元素的状态
            int count_del = 0; //对删除的数字计数
            int count = 0; //用于数哪个数被删除
            int i = 0; //索引
            for(; count_del < n; i++)
            {
                if(i == n) i = 0;
                if(state[i] == 1) count++;
                if(count == m) //第m个数时进行“删除”
                {
                    count = 0;
                    count_del++;
                    state[i] = 0; //更改状态,0表示已经被删除
                }
            } //退出循环时,最后一个元素状态被置0,i++会执行一次,故应返回i-1
            return i-1;
        }
    };
     
    方法二:找递推公式
     
    现在先将n个人按照编号进行排序: 
    0 1 2 3 … n-1 
    那么第一次被淘汰的人编号一定是K-1(假设K < n,若K > n则为(K-1) mod n)。将被选中的人标记为”#”: 
    0 1 2 3 … K-2 # K K+1 K+2 … n-1 
    第二轮报数时,起点为K这个候选人。并且只剩下n-1个选手。假如此时把k看作0’,k+1看作1’… 
    则对应有:
    0 1 2 3 ... K-2 # K K+1 K+2 ... n-1
    n-K' n-2' 0' 1' 2' ... n-K-1'

     

    此时在0’,1’,…,n-2’上再进行一次K报数的选择。假设f[n-1]的值已经求得,因此我们可以直接求得当选者的编号s’。 
    但是,该编号s’是在n-1个候选人报数时的编号,并不等于n个人时的编号 ,所以我们还需要将s’转换为对应的s。 
    通过观察,s和s’编号相对偏移了K,又因为是在环中,因此得到s = (s'+K) mod n。 
    f[n] = (f[n-1] + k) mod n
     
    /*
    方法二:推出递推公式(动态规划)
    i = 1, res =0
    i = 2, res = (0+3)%2 = 1
    i = 3, res = (1+3)%3 = 1
    i = 4, res = (1+3)%4 = 0
    ...
    O(n),O(1)
    */
    class Solution
    {
    public:
        int LastRemaining_Solution(int n, int k)
        {
            if(n < 1 || k < 1) return -1; //返回-1表示非法输入
           
            int  last = 0;
            for(int i = 2; i<=n; i++)
                last = (last + k) % i; //i个人时删除数的索引等于i-1个人时删除数的索引+k(再对i取余)
           
            return last;
        }
    };
     
  • 相关阅读:
    fork-vfork -exit&_exit
    drop_cache-sar
    性能问题eg
    性能工具-mem
    性能工具-io工具
    linux后台开发常用调试工具
    GDB的原理
    可变参数以及stdcall
    linux 中断softirq tasklet
    linux kernel RCU 以及读写锁
  • 原文地址:https://www.cnblogs.com/wikiwen/p/10229501.html
Copyright © 2011-2022 走看看