zoukankan      html  css  js  c++  java
  • POJ-1845 Sumdiv

    Description

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

    Output

    The only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint

    2^3 = 8. 
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
    15 modulo 9901 is 15 (that should be output). 

    题目大意:

    给你两个数a和b,让你求a的b次方的因子的和。

    解题思路:

    蒟蒻是从这篇博客(http://blog.csdn.net/lyy289065406/article/details/6648539)里面得到的思路0.0

    这篇博客说的很详细,对于数论新手是非常友好的0.0

    以及这道题似乎还可以通过逆元求解。不过我还是不会0.0

    这道题的思路其实主要来自于两个定理:

    1.对于任何整数,都有且只有一种方式能够写出其素因子的乘积形式。

    2.对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)有A的所有因子之和为S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)

    根据这两个定理,就可以解出这个题目了。

    代码:

    #include <cstdio>
    #include <cstring>
    using namespace std;
    #define mod 9901
    typedef long long LL;
    
    const int maxn = 1e4 + 5;
    LL prime[maxn], f[maxn], g[maxn];
    
    void init(){
        memset(prime, 0, sizeof(prime));
        for(int i = 2; i < maxn; ++i){
            if(!prime[i]) prime[++prime[0]] = i;
            for(int j = 1; j <= prime[0] && prime[j] < maxn / i; ++j){
                prime[prime[j] * i] = 1;
                if(i % prime[j] == 0) break;
            }
        }
    }
    LL mod_mul(LL a, LL b){
        LL res = 0;
        while(b){
            if(b & 1) res = (res + a) % mod;
            a = (a + a) % mod;
            b >>= 1;
        }
        return res % mod;
    }
    LL mod_exp(LL a, LL b){
        LL res = 1;
        while(b){
            if(b & 1) res = mod_mul(res, a);
            a = mod_mul(a, a);
            b >>= 1;
        }
        return res % mod;
    }
    LL Cal(LL x, LL num){
        if(num == 0) return 1;
        if(num == 1) return (1 + x) % mod;
        
        LL res = 1;
        if(num % 2 == 0){
            res = (res + mod_exp(x, num / 2 + 1)) % mod;
            res = (res * Cal(x, num / 2 - 1)) % mod;
            res = (res + mod_exp(x, num / 2)) % mod;
        }else{
            res = (res + mod_exp(x, num / 2 + 1)) % mod;
            res = (res * Cal(x, num / 2)) % mod;
        }
        return res;
    }
    int main(){
        init();
        LL a, b, tmp, cnt;
        while(~scanf("%lld%lld", &a, &b)){
            if(a == 1) {puts("1"); continue;}
            tmp = a; cnt = 0;
            // memset(f, 0, sizeof(f));
            // memset(g, 0, sizeof(g));
            for(int i = 1; i <= prime[0]; ++i){
                if(tmp % prime[i] == 0){
                    f[cnt] = prime[i];
                    g[cnt] = 0;
                    while(tmp % prime[i] == 0){
                        tmp /= prime[i];
                        ++g[cnt];
                    }
                    ++cnt;
                }
                
                if(tmp == 1) break;
            }
            if(tmp != 1){
                f[cnt] = tmp; g[cnt++] = 1;
            }
            LL ans = 1;
            for(int i = 0; i < cnt; ++i) {
                g[i] *= b;
                // printf("f = %lld, g = %lld
    ", f[i], g[i]);
                ans = (ans * Cal(f[i], g[i])) % mod;
            }
            printf("%lld
    ", ans);
        }
        return 0;
    }


  • 相关阅读:
    【php】【psr】psr4 自动加载规范
    SQL经典50查询语句案例_2(查询平均成绩大于60分的同学的学号和平均成绩)
    Dijkstra算法
    Re——正则表达式_对象(regex) and (match)
    Re——正则表达式_方法(method)
    Re——正则表达式_匹配项(pattern) and 模式(flag)
    Re——正则表达式_常识
    Python制作的精美的一个网络爬虫播放器加本地播放器
    Navicat for MySQL 无法打开文件和导入进数据库unsuccessful的解决方法:
    lingo基础
  • 原文地址:https://www.cnblogs.com/wiklvrain/p/8179437.html
Copyright © 2011-2022 走看看