Description
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output
The only line of the output will contain S modulo 9901.
Sample Input
2 3
Sample Output
15
Hint
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
题目大意:
给你两个数a和b,让你求a的b次方的因子的和。
解题思路:
蒟蒻是从这篇博客(http://blog.csdn.net/lyy289065406/article/details/6648539)里面得到的思路0.0
这篇博客说的很详细,对于数论新手是非常友好的0.0
以及这道题似乎还可以通过逆元求解。不过我还是不会0.0
这道题的思路其实主要来自于两个定理:
1.对于任何整数,都有且只有一种方式能够写出其素因子的乘积形式。
2.对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)有A的所有因子之和为S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
根据这两个定理,就可以解出这个题目了。
代码:
#include <cstdio> #include <cstring> using namespace std; #define mod 9901 typedef long long LL; const int maxn = 1e4 + 5; LL prime[maxn], f[maxn], g[maxn]; void init(){ memset(prime, 0, sizeof(prime)); for(int i = 2; i < maxn; ++i){ if(!prime[i]) prime[++prime[0]] = i; for(int j = 1; j <= prime[0] && prime[j] < maxn / i; ++j){ prime[prime[j] * i] = 1; if(i % prime[j] == 0) break; } } } LL mod_mul(LL a, LL b){ LL res = 0; while(b){ if(b & 1) res = (res + a) % mod; a = (a + a) % mod; b >>= 1; } return res % mod; } LL mod_exp(LL a, LL b){ LL res = 1; while(b){ if(b & 1) res = mod_mul(res, a); a = mod_mul(a, a); b >>= 1; } return res % mod; } LL Cal(LL x, LL num){ if(num == 0) return 1; if(num == 1) return (1 + x) % mod; LL res = 1; if(num % 2 == 0){ res = (res + mod_exp(x, num / 2 + 1)) % mod; res = (res * Cal(x, num / 2 - 1)) % mod; res = (res + mod_exp(x, num / 2)) % mod; }else{ res = (res + mod_exp(x, num / 2 + 1)) % mod; res = (res * Cal(x, num / 2)) % mod; } return res; } int main(){ init(); LL a, b, tmp, cnt; while(~scanf("%lld%lld", &a, &b)){ if(a == 1) {puts("1"); continue;} tmp = a; cnt = 0; // memset(f, 0, sizeof(f)); // memset(g, 0, sizeof(g)); for(int i = 1; i <= prime[0]; ++i){ if(tmp % prime[i] == 0){ f[cnt] = prime[i]; g[cnt] = 0; while(tmp % prime[i] == 0){ tmp /= prime[i]; ++g[cnt]; } ++cnt; } if(tmp == 1) break; } if(tmp != 1){ f[cnt] = tmp; g[cnt++] = 1; } LL ans = 1; for(int i = 0; i < cnt; ++i) { g[i] *= b; // printf("f = %lld, g = %lld ", f[i], g[i]); ans = (ans * Cal(f[i], g[i])) % mod; } printf("%lld ", ans); } return 0; }