zoukankan      html  css  js  c++  java
  • poj 1258AgriNet

    Description

    Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
    Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
    Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
    The distance between any two farms will not exceed 100,000. 

    Input

    The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

    Output

    For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

    Sample Input

    4
    0 4 9 21
    4 0 8 17
    9 8 0 16
    21 17 16 0
    

    Sample Output

    28

    接着模板题- -
    prim
     1 #include <stdio.h>
     2 #include <string.h>
     3 #define INF 0x7f7f7f7
     4 #define N 110
     5 int map[N][N],dis[N],vis[N];
     6 int n;
     7 int prim()
     8 {
     9     int i,j,now,minn,sum=0;
    10     vis[0]=1;
    11     for(i=0;i<n-1;i++)
    12     {
    13         minn=INF;
    14         for(j=0;j<n;j++)
    15             if(!vis[j]&&dis[j]<minn)
    16             {
    17                 minn=dis[j];
    18                 now=j;
    19             }
    20         if(minn==INF)
    21             return sum;
    22         vis[now]=1;
    23         sum+=minn;
    24         for(j=0;j<n;j++)
    25             if(!vis[j]&&map[now][j]<dis[j])
    26                 dis[j]=map[now][j];
    27     }
    28     return sum;
    29 }
    30 int main()
    31 {
    32     int i,j;
    33     while(scanf("%d",&n)!=EOF)
    34     {
    35         for(i=0;i<n;i++)
    36         {
    37             for(j=0;j<n;j++)
    38                 scanf("%d",&map[i][j]);
    39             dis[i]=map[0][i];
    40             vis[i]=0;
    41         }
    42         printf("%d\n",prim());
    43     }
    44     return 0;
    45 }
    kruskal
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 using namespace std;
     5 struct eg
     6 {
     7     int u,v,w;
     8 }p[101*101];
     9 int father[101];
    10 int n,cnt,sum;
    11 bool cmp(eg a,eg b)
    12 {
    13     return a.w<b.w;
    14 }
    15 void init()
    16 {
    17     int i,j,a;
    18     for(i=cnt=0;i<n;i++)
    19     {
    20         for(j=sum=0;j<n;j++)
    21         {
    22             scanf("%d",&a);
    23             if(i>j)
    24             {
    25                 p[cnt].u=i;
    26                 p[cnt].v=j;
    27                 p[cnt].w=a;
    28                 cnt++;
    29             }
    30         }
    31         father[i]=i;
    32     }
    33 }
    34 int find(int x)
    35 {
    36     if(x!=father[x])
    37         father[x]=find(father[x]);
    38     return father[x];
    39 }
    40 void merge(int x,int y,int z)
    41 {
    42     x=find(x),y=find(y);
    43     if(x==y)
    44         return;
    45     father[x]=y;
    46     sum+=z;
    47 }
    48 int main()
    49 {
    50     int i,j;
    51     while(scanf("%d",&n)!=EOF)
    52     {
    53 
    54         init();
    55         sort(p,p+cnt,cmp);
    56         for(i=0;i<cnt;i++)
    57             merge(p[i].u,p[i].v,p[i].w);
    58         printf("%d\n",sum);
    59     }
    60     return 0;
    61 }


  • 相关阅读:
    Quartus 自定义一个IP核,通过AXI总线被HPS系统控制(未完待续)
    IR 发送数据的上升沿和下降沿的判断(边沿检测)
    机器学习特征工程和优化方法
    最大期望算法(EM)
    主题模型(Topic Model)
    马尔科夫(Markov)
    【mysql-02-2】使用文档-建表约束
    【mysql-02-3】使用文档-范式
    【mysql-02-1】使用文档-基本语法
    Linux身份鉴别机制原理
  • 原文地址:https://www.cnblogs.com/wilsonjuxta/p/2997656.html
Copyright © 2011-2022 走看看