zoukankan      html  css  js  c++  java
  • Tensorflow2.0笔记27——acc/loss 可视化,查看效果

    Tensorflow2.0笔记

    本博客为Tensorflow2.0学习笔记,感谢北京大学微电子学院曹建老师

    2.5 acc/loss 可视化,查看效果

    1.acc曲线和loss曲线

    history=model.fit(训练集数据, 训练集标签, batch_size=, epochs=, validation_split=用作测试数据的比例,validation_data=测试集, validation_freq=测试频率)

    history: loss:

    训 练 集

    loss val_loss:测试集 loss

    sparse_categorical_accuracy:训练集准确率v

    al_sparse_categorical_accuracy:测试集准确率

    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    

    acc和loss曲线:

    image-20210623204427001

    import tensorflow as tf
    import os
    import numpy as np
    from matplotlib import pyplot as plt
    
    np.set_printoptions(threshold=np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    
    print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '
    ')
        file.write(str(v.shape) + '
    ')
        file.write(str(v.numpy()) + '
    ')
    file.close()
    
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    
  • 相关阅读:
    JAVA8 之 Stream 流(四)
    关于iphone 6s 页面功能不能正常使用问题
    关于ES6语法的 一些新的特性
    微信授权一直跳转
    js 一道题目引发的正则的学习
    关于this在不同使用情况表示的含义
    详细解析arry.map() ,function.apply() 方法
    关于服务器无法在已发送http表头之后设置状态问题
    七牛上传视频并转码
    使用 v-cloak 防止页面加载时出现 vuejs 的变量名
  • 原文地址:https://www.cnblogs.com/wind-and-sky/p/14924830.html
Copyright © 2011-2022 走看看